
Statistics with MATLAB/Octave

Andreas Stahel

Bern University of Applied Sciences

Version of 5th October 2016

There is no such thing as “the perfect document” and improvements are always possible. I welcome
feedback and constructive criticism. Please let me know if you use/like/dislike these notes. Please
send your observations and remarks to Andreas.Stahel@bfh.ch .

c©Andreas Stahel, 2016
Statistics with MATLAB/Octave by Andreas Stahel is licensed under a Creative Commons Attribution-
ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,
94041, USA.

You are free: to copy, distribute, transmit the work, to adapt the work and to make commercial use of the

work. Under the following conditions: You must attribute the work to the original author (but not in any

way that suggests that the author endorses you or your use of the work). Attribute this work as follows:

Andreas Stahel: Statistics with MATLAB/Octave, BFH-TI, Biel.

If you alter, transform, or build upon this work, you may distribute the resulting work only under the same

or similar license to this one.

mailto:Andreas.Stahel@bfh.ch
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

CONTENTS 1

Contents

1 Introduction 3

2 Commands to Load Data from Files 3

3 Commands to Generate Graphics 4
3.1 Histograms . 4
3.2 Bar Diagrams and Pie Charts . 5
3.3 stem(), stem3(), rose() and stairs() . 6

4 Data Reduction Commands 8
4.1 mean(), std(), var(), median(), mode() . 8
4.2 For vectors: cov(), corr(), corrcoef() . 10
4.3 For matrices: mean(), std(), var(), median(), cov(), corr(), corrcoef() 11

5 Performing Linear Regression 12
5.1 Using LinearRegression() . 12
5.2 Using regress() . 14
5.3 Using polyfit() or ols() . 15

6 Generating Random Number 15

7 Commands to Work with Probability Distributions 16
7.1 Discrete distributions . 17

7.1.1 Bernoulli distribution and general discrete distributions 17
7.1.2 Binomial distribution . 19
7.1.3 Poisson distribution . 20

7.2 Continuous distributions . 20
7.2.1 Uniform distribution . 21
7.2.2 Normal distribution . 21
7.2.3 Student-t distribution . 23
7.2.4 χ2 distribution . 24
7.2.5 Exponential distribution . 25

8 Commands for Confidence Intervals and Hypothesis Testing 26
8.1 Confidence Intervals . 26

8.1.1 Estimating the mean value µ, with (supposedly) known standard deviation σ 26
8.1.2 Estimating the mean value µ, with unknown standard deviation σ 28
8.1.3 Estimating the variance for nomaly distributed random variables 30
8.1.4 Estimating the parameter p for a binomial distribution 31

8.2 Hypothesis Testing, P Value . 32
8.2.1 A coin flipping example . 32
8.2.2 Testing for the mean value µ, with (supposedly) known standard deviation σ 33
8.2.3 Testing for the mean value µ, with unknown standard deviation σ 35
8.2.4 One–sided testing for the mean value µ, with unknown standard deviation σ 36
8.2.5 Testing the variance for normally distributed random variables 37
8.2.6 Two–sided test for the parameter p for a binomial distribution 37
8.2.7 One–sided test for the parameter p for a binomial distribution 39
8.2.8 Testing for the parameter p for a binomial distribution for large N 41

Index 43

SHA 5-10-16

LIST OF TABLES 2

List of Figures

1 Histograms . 4
2 A histogram with matching normal distribution . 5
3 Bar diagram . 6
4 Pie charts . 6
5 Stem plots . 7
6 Rose plot and stairs plot . 7
7 Boxplots . 9
8 Multiple boxplots . 10
9 Results of two linear regressions . 13
10 Result of 3D linear regression . 14
11 Random numbers generated by a binomial distribution 16
12 Discrete distributions . 18
13 A Poisson distribution with λ = 2.5 . 20
14 Continous distributions . 22
15 Student-t distributions and a normal distribution . 24
16 χ2 distributions . 25
17 Exponential distributions . 25
18 Confidence intervals at levels of significance α = 0.05 and α = 0.01 26
19 Two- and one–sided confidence intervals . 28

List of Tables

1 Commands to load data from a file . 3
2 Commands to generate statistical graphs . 4
3 Commands for data reduction . 8
4 Commands for generating random numbers . 15
5 Functions for distributions . 17
6 Discrete distributions . 17
7 Continuous distributions . 21
8 Student-t distribution for some small values of ν . 24
9 Commands for testing a hypothesis . 32
10 Errors when testing a hypothesis with level of significance α 33

SHA 5-10-16

2 COMMANDS TO LOAD DATA FROM FILES 3

1 Introduction

In this document a few MATLAB/Octave commands for statistics are listed and elementary sample
codes are given. This should help you to get started using Octave/MATLAB for statistical problems.
Find the current version of this document at web.ti.bfh.ch/˜sha1/StatisticsWithMatlabOctave.pdf.

• The short notes you are looking at right now should serve as a starting point and will not
replace reading and understanding the built-in documentation of Octave and/or MATLAB.

• There are many good basic introductions to Octave and MATLAB. Use you favourite docu-
ment and the built-in help. The author of these notes maintains a set of lecture notes at
web.ti.bfh.ch/˜sha1/Labs/PWF/Documentation/OctaveAtBFH.pdf

• For users of MATLAB is is assumed that the statistics toolbox is available.

• For users of Octave is is assumed that the statistics package is available and loaded.

– Use pkg list to display the list of available packages. Packages already loaded are
marked by *.

– If the package statistics is installed, but not loaded, then type pkg load statistics .

– If the package statistics is not installed on a Unix system, then type pkg install

-forge statistics. It is possible that you have to install the package io first by pkg

install -forge io .

– On a typical Win* system all packages are usually installed, since it is very difficult to
install.

2 Commands to Load Data from Files

It is a common task that data is available in a file. Depending on the format of the data there
are a few commands that help to load the data into MATLAB or Octave. They will be used often in
these notes for the short sample codes. Consult the built-in help to find more information on those
commands.

load() loading data in text format or binary formats

dlmread() loading data in (comma) separated format

dlmwrite() writing data in (comma) separated format

textread() read data in text format

strread() read data from a string

fopen() open a file for reading or writing

fclose() close a file for reading

fread() read fron an open file

fgetl() read one line from a file

sscanf() formated reading from a string

sprintf() formated writing to a string

Table 1: Commands to load data from a file

SHA 5-10-16

https://web.ti.bfh.ch/~sha1/StatisticsWithMatlabOctave.pdf
https://web.ti.bfh.ch/~sha1/Labs/PWF/Documentation/OctaveAtBFH.pdf

3 COMMANDS TO GENERATE GRAPHICS 4

3 Commands to Generate Graphics

In Table 2 find a few Octave/MATLAB commands to generate pictures used in statistics. Consult
the built-in help to learn about the exact syntax.

hist() generate a histogram

[heights,centers] = hist() generate data for a histogram

histc() compute histogram count

histfit() generate histogram and fitted normal density

bar(centers,heights) generate a bar chart

barh() generate a horizontal bar chart

bar3() generate a 3D bar chart

pie() generate a pie chart

stem() generate a 2D stem plot

stem3() generate a 3D stem plot

rose() generate an angular histogram

stairs() generate a stairs plot

boxplot() generate a boxplot

Table 2: Commands to generate statistical graphs

3.1 Histograms

With the command hist() you can generate histograms, as seen in Figure 1.

data = 3+2∗randn(1000 ,1); % generate the random data
f igure (1) ; h i s t (data) % hisogram with default values
f igure (2) ; h i s t (data ,30) % histogram with 30 c la s se s

-4 -2 0 2 4 6 8 10
0

50

100

150

200

250

(a) default values

-4 -2 0 2 4 6 8 10
0

20

40

60

80

(b) with 30 classes

-4 -2 0 2 4 6 8 10
0

20

40

60

80

100

120

(c) with selected centers

Figure 1: Histograms

It is possible to specify the centers of the classes and then compute the number of elements in
the class by giving the command hist() two return arguments. Then use bar() to generate the
histogram. The code below chooses classes of width 0.5 between −2.5 and +9.5 . Thus the first
center is at −2.25, the last center at 9.25 and the centers are 0.5 apart.

SHA 5-10-16

3 COMMANDS TO GENERATE GRAPHICS 5

[heights , centers] = hist (data , [−2 .25 : 0 . 5 : 9 . 25]) ;
f igure (3) ; bar (centers , heights)

The number of elements on the above classes can also be computed with the command heights =

histc(data,[-2.5:0.5:9.5]). Here we specify the limits of the classes.
With a combination of the commands unique() and hist() one can also count the number of

entries in a vector.

a = randi (10 ,100 ,1) % generate 100 random integres between 1 and 10
[count , elem] = hist (a , unique (a)) % determine the entr i e s (elem) and

% their number (count)
bar (elem , count) % display the bar chart

With the command histfit() generate a histogram and the best matching normal distribution
as a graph. Find the result of the code below in Figure 2.

data = round(50+20∗randn(1 ,2000)) ;
h i s t f i t (data)
xlabel (’ values ’) ; ylabel (’number of events ’)

-20 0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

values

nu
m

be
r

of
 e

ve
nt

s

Figure 2: A histogram with matching normal distribution

3.2 Bar Diagrams and Pie Charts

Using the commands bar() and barh() one can generate vertical and horizontal bar charts. The
results of the code below is shown in Figure 3.

ages = 20:27;
students = [2 1 4 3 2 2 0 1] ;

f igure (1) ; bar (ages , students)
xlabel (’ age of students ’) ; ylabel (’number of students ’)
axis ([19 .5 27.5 0 5])

f igure (2) ; barh(ages , students)
axis ([0 5 19.5 27 .5])
ylabel (’ age of students ’) ; xlabel (’number of students ’)

SHA 5-10-16

3 COMMANDS TO GENERATE GRAPHICS 6

20 21 22 23 24 25 26 27
0

1

2

3

4

5

age of students

nu
m

be
r

of
 s

tu
de

nt
s

(a) vertical

0 1 2 3 4 5

20

21

22

23

24

25

26

27

number of students

ag
e

of
 s

tu
de

nt
s

(b) horizontal

Figure 3: Bar diagram

Using the commands pie() and pie3() one can generate pie charts. With the correct options
labels can be set and some of the slices can be drawn slightly removed from the pie. The result of
the code below is shown in Figure 4.

strength = [55 52 36 28 13 16] ;
Labels = { ’SVP’ , ’SP’ , ’FDP’ , ’CVP’ , ’GR’ , ’ Div ’}
f igure (1) ; pie (strength)
f igure (2) ; pie (strength , [0 1 0 0 0 0] , Labels)
f igure (3) ; pie3 (strength , Labels)

28%

26%
18%

14%

7%

8%

(a) default values

SVP

SP
FDP

CVP

GR

Div

(b) with labels

SP

FDP

Div

SVP

CVP
GR

(c) 3D

Figure 4: Pie charts

3.3 stem(), stem3(), rose() and stairs()

With a stem plot a vertical line with a small marker at the top can be used to visualize data. The
code below first generates a set of random integers, and then uses a combination of unique() and
hist() to determine the frequency of the numbers.

SHA 5-10-16

3 COMMANDS TO GENERATE GRAPHICS 7

i i = randi (10 ,100 ,1); % generate 100 random integers between 1 and 10
[anz , cent] = hist (i i , unique (i i)) % count the events
stem(cent , anz) % generate a 2D stem graph
xlabel (’ value ’) ; ylabel (’number of events ’) ; axis ([0 11 , −1 max(anz)+1])
−−>
anz = 12 5 10 12 12 9 11 11 7 11
cent = 1 2 3 4 5 6 7 8 9 10

0 2 4 6 8 10

0

2

4

6

8

10

12

value

nu
m

be
r

of
 e

ve
nt

s

(a) 2D

y
x

-0.5
0

0.5
1

0

1

2h
ei

gh
t

3

4

5

6

-1 -1
-0.5

0
0.5

1

(b) 3D

Figure 5: Stem plots

With stem3() a 3D stem plot can be generated.

theta = 0 : 0 . 2 : 6 ;
stem3 (cos (theta) , s in (theta) , theta) ;
xlabel (’x ’) ; ylabel (’y ’) ; z labe l (’ height ’)

MATLAB/Octave provide commands to generate angular histograms and stair plots.

20

40

60

80

0

30

60
90

120

150

180

210

240
270

300

330

angular histogram with 8 sectors

(a) rose plot

5 6 7 8 9 10
50

55

60

65

70

75

value

nu
m

be
r

of
 e

ve
nt

s

(b) stairs plot

Figure 6: Rose plot and stairs plot

SHA 5-10-16

4 DATA REDUCTION COMMANDS 8

dataRaw = randi ([5 10] ,1 ,400) ;
f igure (1) ; rose (dataRaw,8) %
t i t l e (’ angular histogram with 8 sectors ’)
[data , cent] = hist (dataRaw, unique (dataRaw)) % count the events

f igure (2) ; s t a i r s (cent , data)
xlabel (’ value ’) ; ylabel (’number of events ’) ;

4 Data Reduction Commands

In Table 3 find a few Octave/MATLAB commands to extract information from data sets.

mean() mean value of a data set

median() median value of a data set

std() standard deviation of a data set

var() variance of a data set

quantile() determine arbitrary quantiles

mode() determine the most frequently occurring value

LinearRegression() perform a linear regression

regress() perform a linear regression

polyfit() perform a linear regression for a polynomial

ols() perform an ordinary linear regression

gls() perform an generalized linear regression

cov() covariance matrix

corr() linear correlation matrix

corrcoef() correlation coefficient

Table 3: Commands for data reduction

4.1 mean(), std(), var(), median(), mode()

• For a vector x ∈ RN the command mean(x) determines the mean value by

mean(x) = x̄ =
1

N

n∑
j=1

xj

• For a sorted vector x ∈ RN the command median(x) determines the median value by

median(x) =

{
x(N+1)/2 if N is odd
1
2(xN/2 + xN/2+1) if N is even

• For a vector x ∈ RN the command std(x) determines the standard deviation by the formula

std(x) =
√

var(x) =

 1

N − 1

n∑
j=1

(xj − x̄)2

1/2

By default cov() will normalize by (N − 1), but using an option you may divide by N , e.g.
std(x, 1).

SHA 5-10-16

4 DATA REDUCTION COMMANDS 9

• For a vector x ∈ RN the command var(x) determines the variance by the formula

var(x) = (std(x))2 =
1

N − 1

n∑
j=1

(xj − x̄)2

By default var() will normalize by (N − 1), but using an option you may divide by N , e.g.
var(x,1).

• With the command quantile() you can compute arbitrary quantiles. Observe that there are
different methods to determine the quantiles, leading to different results! Consult the built-in
documentation in Octave by calling help quantile .

• With the command boxplot() you can generate a plot showing the median, the first and
third quartile as a box and the extrem values. Observe that there are different ways to com-
pute the positions of the quartiles and some implementations of boxplot() detect and mark
outliers. Consult the documentation in Octave. Boxplots can also be displayed horizontally
or vertically, as shown in Figure 7.

0

5

10

15

20

(a) vertical

0 5 10 15 20

(b) horizontal

Figure 7: Boxplots

N = 10; % number of data points
data1 = 20∗rand(N, 1) ;
Mean = mean(data1)
Median = median(data1)
StdDev = std (data1) % uses a div i s ion by (N−1)
Variance = StdDevˆ2
Variance2 = mean((data1−mean(data1)) .ˆ2) % uses a div i s ion by N
Variance3 = sum((data1−mean(data1)) .ˆ2)/(N−1)

f igure (1)
Quartile1 = boxplot (data1) ’ % in Matlab s l i gh t l y d i f f e r ent
set (gca , ’ XTickLabel ’ ,{ ’ ’}) % remove labe l s on x axis
c axis = axis () ; axis ([0 . 5 1.5 c axis (3 : 4)])

f igure (2)
%boxplot (data1 , ’ orientation ’ , ’ horizontal ’) % Matlab
boxplot (data1 ,0 , ’+ ’ ,0) % Octave
set (gca , ’ YTickLabel ’ ,{ ’ ’}) % remove labe l s on y axis

SHA 5-10-16

4 DATA REDUCTION COMMANDS 10

c axis = axis () ; axis ([c axis (1 :2) ,0 .5 1 . 5])

Quartile2 = quantile (data1 , [0 0.25 0.5 0.75 1]) ’
Quantile10 = quantile (data1 , 0 : 0 . 1 : 1) ’

data2 = randi (10 , [100 ,1]) ;
ModalValue = mode(data2) % determine the value occuring most often

It is possible to put multiple boxplots in one graph, and label the axis according to the data.
In Figure 8 the weekdays are used to label the horizontal axis.

% generate the random data , with some structure
N = 20; data = zeros (N, 7) ;
for i = 1:7

data (: , i) = 3+4∗s in (i /4)+randn(N, 1) ;
end%for

boxplot (data) ;
set (gca () , ’ xtick ’ , [1 : 7] , ’ xt icklabel ’ , { ’Mo’ , ’Tu’ , ’We’ , ’Th’ , ’ Fr ’ , ’ Sa ’ , ’ Su ’ }) ;

Mo Tu We Th Fr Sa Su
0

2

4

6

8

10

Figure 8: Multiple boxplots

4.2 For vectors: cov(), corr(), corrcoef()

For covariance and correlation coefficients first subtract the mean value of the components from a
vector, i.e. the mean value of the components is zero.

• Covariance of two vectors ~x, ~y ∈ Rn

cov(x, y) =
1

n− 1

n∑
j=1

((x−mean(x))j · (y −mean(y))j)

=
1

n− 1

n∑
j=1

((xj yj −mean(x) mean(y))

SHA 5-10-16

4 DATA REDUCTION COMMANDS 11

By default cov() will normalize by (n − 1), but using an option you may divide by n, e.g.
cov(x,y,1). If x = y we obtain

cov(x, x) =
1

n− 1

n∑
j=1

(
(x−mean(x))2

j

)
= var(x)

• The correlation coefficient of two vectors ~x, ~y ∈ Rn

corr(x, y) =
cov(x, y)

std(x) · std(y)

=
〈(~x−mean(~x)) , (~y −mean(~y))〉
‖~x−mean(~x)‖ ‖~y −mean(~y)‖

=

∑n
j=1(x−mean(x))j · (y −mean(y))j

(
∑n

j=1(xj −mean(x))2)1/2(
∑n

j=1(yj −mean(y))2)1/2

Observe that if the average value of the components of both vectors are zero, then there is a
geometric interpretation of the correlation coefficient as the angle between the two vectors.

corr(~x, ~y) =
〈~x , ~y〉
‖~x‖ ‖~y‖

= cos(α)

4.3 For matrices: mean(), std(), var(), median(), cov(), corr(), corrcoef()

Most of the above commands can be applied to matrices. Use each column as one data vector.
Assume that M ∈ RN×m is a matrix of m column vectors with N values in each column.

• mean(M) compute the average of each column. The result is a row vector with m components.

• std(M) compute the standard deviation of each column. The result is a row vector with m
components.

• var(M) compute the variance of each column. The result is a row vector with m components.

• median(M) compute the median value of each column. The result is a row vector with m
components.

To describe the effect of cov() and corr() first step is to assure that the average of each column
equals zero.

Mm = M− ones (N,1)∗mean(M) ;

Observe that this operation does not change the variance of the column vectors.

• cov(M) determines the m×m covariance matrix

cov(M) =
1

N − 1
Mm′ ·Mm

• The m ×m correlation matrix contains all correlation coefficients of the m column vectors
in the matrix M. To compute this, first make sure that the norm of each column vector
equals 1, i.e. the variance of the column vectors is normalized to 1 .

SHA 5-10-16

5 PERFORMING LINEAR REGRESSION 12

Mm1 = Mm / diag (sqrt (sum(Mm. ˆ 2))) ;

Determine the m×m (auto)correlation matrix corr(M) by

corr(M) = Mm1′ ·Mm1

Observe that the diagonal entries are 1, since the each column vector correlates perfectly with
itself.

5 Performing Linear Regression

5.1 Using LinearRegression()

The command LinearRegression() was written by the author of these notes.

• For Octave the command is contained in the optimization package optim. You may download
the code at LinearRegression.m.

• The command can be used with MATLAB too, but you need a Matlab version.

With this command you can apply the method of least square to fit a curve to a given set of
data points. The curve does not have to be a linear function, but a linear combination of (almost
arbitrary) functions. In the code below a straight line is adapted to some points on a curve
y = sin(x). Thus we try to find the optimal values for a and m such that

χ2 =
∑
j

(a+mxj − yj)2 is minimal

The code to perform the this linear regression is given by

% generate the a r t i f i c i a l data
x = linspace (0 ,2 ,10) ’ ; y = sin (x) ;

% perform the l inear regression , aiming for a stra ight l ine
F = [ones (s i z e (x)) ,x] ;
[p , e var , r , p var] = LinearRegression (F, y) ;
Parameters and StandardDeviation = [p sqrt (p var)]
estimated std = sqrt (mean(e var))
−−>
Parameters and StandardDeviation = 0.202243 0.091758

0.477863 0.077345
estimated std = 0.15612

The above result implies that the best fitting straight line is given by

y = a+mx = 0.202243 + 0.477863x

Assuming that the data is normally distributed one can show that the values of a and m normally
distributed. For this example the estimated standard deviation of a is given by 0.09 and the
standard deviation of m is 0.08. The standard deviation of the residuals rj = a + mxj − yj is
estimated by 0.15 . This is visually confirmed by Figure 9(a), generated by the following code.

SHA 5-10-16

https://staff.ti.bfh.ch/sha1/Labs/PWF/Demos/regression/LinearRegression.m
https://staff.ti.bfh.ch/sha1/Labs/PWF/Codes/regression/Matlab/LinearRegression.m

5 PERFORMING LINEAR REGRESSION 13

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) straight line regression

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

(b) parabola regression

Figure 9: Results of two linear regressions

y reg = F∗p ;
f igure (1)
plot (x , y , ’+ ’ , x , y reg)

With linear regression one may fit different curves to the given data. The code below generates
the best matching parabola and the resulting Figure 9(b).

% perform the l inear regression , aiming for a parabola
F = [ones (s i z e (x)) ,x , x . ˆ 2] ;
[p , e var , r , p var] = LinearRegression (F, y) ;

Parameters and StandardDeviation = [p sqrt (p var)]
estimated std = sqrt (mean(e var))

y reg = F∗p ;
f igure (2)
plot (x , y , ’+ ’ , x , y reg)
−−>
Parameters and StandardDeviation = −0.026717 0.015619

1.250604 0.036370
−0.386371 0.017506

estimated std = 0.019865

Since the parabola is a better match for the points on the curve y = sin(x) we find smaller estimates
for the standard deviations of the parameters and residuals.

It is possible perform linear regression with functions of multiple variables. The function

z = p(1) · 1 + p(2) · x+ p(3) · y

describes a plane in 3D space. A surface of this type is fit to a set of given points (xj , yj , zj) by
the code below, resulting in Figure 10. The columns of the matrix F have to contain the values of
the basis functions 1, x and y at the given data points.

SHA 5-10-16

5 PERFORMING LINEAR REGRESSION 14

N = 100; x = 2∗rand(N, 1) ; y = 3∗rand(N, 1) ;
z = 2 + 2∗x− 1.5∗y + 0.5∗randn(N, 1) ;

F = [ones (s i z e (x)) , x , y] ;
p = LinearRegression (F, z)

[x grid , y grid] = meshgrid ([0 : 0 . 1 : 2] , [0 : 0 . 2 : 3]) ;
z gr id = p(1) + p(2)∗ x grid + p(3)∗ y grid ;

f igure (1) ;
plot3 (x , y , z , ’∗ ’)
hold on
mesh(x grid , y grid , z gr id)
xlabel (’x ’) ; ylabel (’y ’) ; z labe l (’ z ’) ;
hold o f f
−−>
p = 1.7689 2.0606 −1.4396

Since only very few (N=100) points were used the exact parameter values ~p = (+2, +2, −1.5) are
note very accurately reproduced. Increasing N will lead to more accurate results for this simulation,
or decrease the size of the random noise in +0.5*randn(N,1).

x
y

-4

-2

0

z

2

4

6

2.53
2 1.5 1 0.5 0 0

0.5
1

1.5
2

Figure 10: Result of 3D linear regression

5.2 Using regress()

MATLAB and Octave provide the command regress() to perform linear regressions. The following
code determines the best matching straight line to the given data points.

F = [ones (s i z e (x)) ,x] ;
[p , p int , r , r int , s tats] = regress (y ,F) ;
parameters = p
parameter intervals = p int
estimated std = std (r)
−−>
parameters = 0.20224

0.47786
parameter intervals = −0.0093515 0.4138380

0.2995040 0.6562220
estimated std = 0.14719

SHA 5-10-16

6 GENERATING RANDOM NUMBER 15

The values of the optimal parameters (obviously) have to coincide with the result generated by
LinearRegression(). Instead of the standard deviations for the parameters regress() returns the
confidence intervals for the parameters. The above numbers imply for the straight line y = a+mx

−0.0093 < a < 0.4138

0.300 < m < 0.656
with a confidence level of 95%

The value of the confidence level can be adjusted by calling regress() with a third argument.

5.3 Using polyfit() or ols()

If your function is a polynomial you may use polyfit(). The above example for a parabola
(polynomial of degree 2) is solved by

[p , s] = po ly f i t (x , y , 2) ;
p
−−>
p = −0.386371 1.250604 −0.026717

Observe that the coefficient of the polynomial are returned in deceasing order. Since regress()

and LinearRegression() are more flexible and provide more information your author’s advice is
to use those, even if polyfit() would work.

With Octave one may also use the command ols(), short for Ordinary Least Square. But as
above, there is no advantage over using LinearRegression().

p = ols (y ,F)
−−>
p = −0.026717 1.250604 −0.386371

6 Generating Random Number

In Table 4 find commands to generate random numbers, given by different distributions.

rand() uniform distribution

randn() normal distribution

rande() exponentially distributed

randp() Poisson distribution

randg() gamma distribution

normrnd() normal distribution

binornd() binomial distribution

exprnd() exponential distribution

discrete rnd() discrete distribution

Table 4: Commands for generating random numbers

As an example we generate N = 1000 random numbers given by a binomial distribution with
n = 9 trials and p = 0.8. Find the result of the code below in Figure 11 and compare with

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 16

Figure 12(d).

N = 1000; data = binornd (9 , 0.8 , N, 1) ;
[height , centers] = hist (data , unique (data))
bar (centers , height/sum(height))
xlabel (’ value ’) ; ylabel (’ experimenta probabil ity ’)
t i t l e (’ Binomial d istr ibut ion with n=9, p=0.8 ’)

2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

value

ex
pe

rim
en

ta
 p

ro
ba

bi
lit

y

Binomial distribution with n=9, p=0.8

Figure 11: Histogram of random numbers, generated by a binomial distribution with n = 9, p = 0.8

7 Commands to Work with Probability Distributions

MATLAB/Octave provides functions to compute the values of probability density functions (PDF),
and the cumulative distribution functions (CDF). In addition the inverse of the CDF are provided,
i.e. solve CDF(x) = y for x . As examples examine the following short code segments, using the
normal distribution.

• To determine the values of the PDF for a normal distribution with mean 3 and standard
deviation 2 for x values between −1 and 7 use

x = linspace (−1 ,7);
pdf = normpdf(x , 3 , 2) ;
plot (x , pdf)

• To deterime the corresponding values of the CDF use cdf = normcdf(x,3,2) .

• To determine for what values of x the value of the CDF equals 0.025 and 0.975 use

norminv ([0 .025 ,0 .975] ,3 ,2)
−−>
−0.91993 6.91993

The result implies that 95% of all values are between −0.91 ≈ −1 and +6.91 ≈ 7. This is
consistent with the approximative rule of thumb µ± 2σ.

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 17

For most distributions MATLAB and Octave provide multiple commands to work with the distri-
bution, see Table 7. The first part of the name of the command consists of an abbreviated name of
the distribution and the second part spells out the operation to be applied. As an example consider
the normal distribution and then use the command normpdf(), normcdf(), norminv(), normrnd()
and normstat() to work with the normal distribution.

Name of command Function

*pdf() probability density function

*cdf() cumulative density function

*inv() inverse of the cumulative density function

*rnd() generate random numbers

*stat() compute mean and variance

Table 5: Functions for distributions

In addition one may use the commands cdf() and pdf()1 to compute values of the probability
density function. As example consider the result of cdf(’normal’,0,0,1), leading to 0.500 .

7.1 Discrete distributions

For any discrete distribution determine the mean value µ and the variance σ2 by

µ =
∑
j

pdf(xj) · xj and σ2 =
∑
j

pdf(xj) · (xj − µ)2

Name of distribution Function µ σ median

Discrete discrete pdf(x,v,p)

Bernoulli discrete pdf(x,[0 1],[1-p,p]) p
√
p (1− p)

Binomial binopdf(x,n,p) n p
√
n p (1− p)

Poisson poisspdf(x,lambda) λ
√
λ

Hypergeometric hygepdf(x,T,M,n) n m
T

Table 6: Discrete distributions

7.1.1 Bernoulli distribution and general discrete distributions

With the functions discrete pdf() and discrete cdf()2 you can generate discrete probability
distributions. To generate a Bernoulli distribution with probability 1/3

P (X = 0) =
2

3
and P (X = 1) =

1

3

use the code below, leading to Figure 12(a). There is no need to normalize the total probability
to 1, i.e. in the code below discrete pdf(x,[0 1],[2 1]) would work just as well.

1The code for pdf() will be part of the next release of the package statistics.
2The current version of MATLAB does not provide these two commands. Ask this author for a MATLAB compatible

versions.

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 18

-1 -0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1
pdf
cdf

Bernoulli distribution with p=1/3

(a) Bernoulli distribution

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
pdf
cdf

discrete distribution, throwing dice

(b) discrete distribution, dice

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
binomial distribution, n=4, p=0.5

pdf
cdf

(c) binomial distribution

-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
binomial distribution, n=9, p=0.8

pdf
cdf

(d) binomial distribution

Figure 12: Discrete distributions

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 19

x = −1:2;
p = discrete pdf (x , [0 1] , [2/3 1/3]) ;
cp = discre te cd f (x , [0 1] , [2/3 1/3]) ;

f igure (2) ; stem(x ,p , ’ b ’) ; hold on
s ta i r s (x , cp , ’ k ’)
t i t l e (’ Bernoull i d i str ibut ion with p=1/3’)
axis ([−1 2 −0.1 1 . 1])
legend (’ pdf ’ , ’ cdf ’ , ’ location ’ , ’ northwest ’)
hold o f f

The Bernoulli distribution can also be considered a special case of the binomial distribution, with
n = 1 .

Throwing a regular dice also leads to a discrete distribution, each of the possible results 1, 2,
3, 4, 5 and 6 will show with probability 1/6 . Find the result in Figure 12(b).

x = 0 :7 ;
p = discrete pdf (x , 1 : 6 , ones (6 ,1)/6) ;
cp = discre te cd f (x , 1 : 6 , ones (6 ,1)/6) ;
f igure (1) ; stem(x ,p , ’ b ’) ; hold on
s ta i r s (x , cp , ’ k ’)
t i t l e (’ d i screte distr ibution , throwing dice ’)
axis ([0 7 −0.1 1])
legend (’ pdf ’ , ’ cdf ’ , ’ location ’ , ’ northwest ’) ; hold o f f

7.1.2 Binomial distribution

The binomial distribution is generated by n independent Bernoulli trials with probability p, i.e. for
each of the n independent events you obtain the result 1 with probability p . Then add the results.
This leads to

X =
n∑
j=1

Xj

P (X = i) = p(i) =

(
n

i

)
pi · (1− p)n−i =

n!

i! · (n− i)!
pi · (1− p)n−i

The code below generates the PDF and CDF for a binomial distribution with 4 events and the
individual probability p = 0.5. Find the results in Figure 12(c). The resulting distribution is
symmetric about the mean value 2 .

x = −1:5;
p = binopdf (x , 4 , 0 . 5) ;
cp = binocdf (x , 4 , 0 . 5) ;

f igure (1) ; stem(x ,p , ’ b ’) ; hold on
s ta i r s (x , cp , ’ k ’)
t i t l e (’ binomial distr ibution , n=4, p=0.5 ’)
legend (’ pdf ’ , ’ cdf ’ , ’ location ’ , ’ northwest ’) ; hold o f f

Similarly you may examine the distribution function of 9 draws with an individual probability
of p = 0.8. In the result in Figure 12(d) it is clearly visible that the result is skewed towards higher
values, since they occur with a higher probability..

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 20

x = −1:10;
p = binopdf (x , 9 , 0 . 8) ;
cp = binocdf (x , 9 , 0 . 8) ;

f igure (1) ; stem(x ,p , ’ b ’) ; hold on
s ta i r s (x , cp , ’ k ’)
t i t l e (’ binomial distr ibution , n=9, p=0.8 ’)
legend (’ pdf ’ , ’ cdf ’ , ’ location ’ , ’ northwest ’) ; hold o f f

The command binostat determines mean and standard deviation of a binomial distribution.

7.1.3 Poisson distribution

A Poisson distribution with parameter λ > 0 is given by

P (X = i) = p(i) =
λi

i!
e−λ

Find the graph of the Poisson distribution with λ = 2.5 in Figure 13, generated by

x = −1:10; lambda = 2 .5 ;
p = poisspdf (x , lambda) ;
cp = poisscdf (x , lambda) ;

f igure (1) ; stem(x ,p , ’ b ’) ; hold on
s ta i r s (x , cp , ’ k ’)
t i t l e (’ Poisson distr ibution , \lambda=2.5 ’)
legend (’ pdf ’ , ’ cdf ’ , ’ location ’ , ’ northwest ’) ; hold o f f

-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Poisson distribution, λ =2.5

pdf
cdf

Figure 13: A Poisson distribution with λ = 2.5

7.2 Continuous distributions

For all continuous distributions one may compute the average value µ, the standard deviation σ
and the cumulative distribution function by integrals. The mode and median of the distributions
are characterized as special values of the cumulative distribution function.

µ =

∫ +∞

−∞
pdf(x) · x dx

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 21

σ2 =

∫ +∞

−∞
pdf(x) · (x− µ)2 dx

cdf(x) =

∫ x

−∞
pdf(s) ds

cdf(median) = 0.5

cdf(mode) = max
x∈R
{pdf(x)}

Name Function µ σ median

Uniform unifpdf(x,0,1) 1/2 1/
√

12 1/2

Uniform unifpdf(x,A,B) A+B
2

B−A√
12

A+B
2

Normal normpdf(x,mu,sigma) µ σ µ

Standard Normal stdnormal pdf(x) 0 1 0

Exponential exppdf(x,lambda) λ λ λ ln 2

Student-t tpdf() 0
√

n
n−2 if n > 2 0

χ distribution
√

2 Γ((n+1)/2)
Γ(n/2)

√
n− µ2

χ2 distribution chi2pdf(x,n) n
√

2n ≈ n (1− 2
9n)3

Table 7: Continuous distributions

7.2.1 Uniform distribution

The uniform distribution on the interval [A , B] is characterized by

pdf(x) =

{
1

B−A for A ≤ x ≤ B
0 otherwise

cdf(x) =


0 for x ≤ A
x−A
B−A for A ≤ x ≤ B
1 for B ≤ x

Find the result for a uniform distribution on the interval [0 , 1] in Figure 14(a), generated by

x = linspace (−0.5 ,1.5);
p = unifpdf (x , 0 , 1) ;
cp = unifcdf (x , 0 , 1) ;

f igure (1)
plot (x ,p , ’ b ’ , x , cp , ’ k ’)
t i t l e (’ uniform distr ibution ’)
axis ([−0.5 1.5 −0.1 1 . 2])
legend (’ pdf ’ , ’ cdf ’ , ’ location ’ , ’ northwest ’)

7.2.2 Normal distribution

The normal distribution with mean µ and standard devition σ is given by

pdf(x) =
1

σ
√

2π
exp(−(x− µ)2

2σ2
)

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 22

-0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

pdf
cdf

uniform distribution

(a) uniform distribution

-0.5 0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1
normal distribution, µ= 1, σ=0.5

pdf
cdf

(b) normal distribution

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1
Student-t distribution, ν=4

pdf
cdf

(c) Student-t distribution

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

exponential distribution, mean value λ =1

pdf
cdf

(d) exponential distribution

Figure 14: Continous distributions

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 23

cdf(x) =

∫ x

−∞
pdf(s) ds =

1

2

(
1 + erf(

x− µ√
2σ

)

)
Find the result for a normal distribution with mean µ = 1 and standard deviation σ = 1

2 in
Figure 14(b), generated by

x = linspace (−0.5 ,3.0);
p = normpdf(x , 1 , 0 . 5) ;
cp = normcdf(x , 1 , 0 . 5) ;

f igure (1)
plot (x ,p , ’ b ’ , x , cp , ’ k ’)
t i t l e (’ normal distr ibution , \mu= 1 , \sigma=0.5 ’)
axis ([−0.5 3.0 −0.1 1 .])
legend (’ pdf ’ , ’ cdf ’ , ’ location ’ , ’ northwest ’)

7.2.3 Student-t distribution

The Student-t or Student’s t distribution arises when estimating the variances of small samples of
normally distributed numbers. I can be expressed on terms of the Gamma function3 Γ by

pdf(x) =
Γ(ν+1

2)
√
νπ Γ(ν2)

(
1 +

x2

ν

)− ν+1
2

where ν ∈ N is the number of degrees of freedom. The corresponding cumulative density function
is given by the general formula

cdf(x) =

∫ x

−∞
pdf(s) ds

and there is no elementary expression for it, for most values of ν.

• The probability density function resembles a normal distribution with mean 0 and standard
deviation 1, but it is wider and lower.

• As the number of degrees of freedom ν increases it converges to a standard normal distribution.

• For some small values of ν there are explicit formulas, shown in Table 8.

Figure 15 was generated by

x = linspace (−3 ,3);
p1 = tpdf (x , 1) ; p2 = tpdf (x , 2) ; p10 = tpdf (x , 10) ; pn = normpdf(x , 0 , 1) ;

f igure (1)
plot (x , p1 , x , p2 , x , p10 , x ,pn)
t i t l e (’ Student−t distr ibution ’) ; axis ([−3 3 −0.1 0 . 5])
legend (’\nu=1 ’ , ’\nu=2 ’ , ’\nu=10 ’ , ’normal ’ , ’ location ’ , ’ northwest ’)

3The Gamma function is an extension of the well known factorial function, Γ(n+ 1) = n! =
∏n
i=1 i .

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 24

-3 -2 -1 0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

0.5
Student-t distribution

ν=1
ν=2
ν=10

normal

Figure 15: Student-t distributions and a normal distribution

ν pdf(x) cdf(x)

1 1
π (1+x2)

1
2 + 1

π arctan(x)

2 1
(2+x2)3/2

1
2 + x

2
√

2+x2

3 6
√

3
π (3+x2)2

∞ 1√
2π

exp(−x2

2) 1
2 (1 + erf(x√

2
))

Table 8: Student-t distribution for some small values of ν

7.2.4 χ2 distribution

The χ2–distribution with parameter n (degrees of freedom) is defined for x > 0 and given by

pdf(x) =
1

2n/2 Γ(n2)
x
n
2
−1 exp(−x

2
)

cdf(x) =

∫ x

0
pdf(s) ds =

1

Γ(n2)
γ(
n

2
,
x

2
)

The mode (maximal value) is attained at max{n−2 , 0}. Find the result for a a few χ2 distributions
in Figure 16, generated by

x = linspace (0 ,4) ;
pdf1 = chi2pdf (x , 1) ; pdf2 = chi2pdf (x , 2) ; pdf3 = chi2pdf (x , 3) ; pdf5 = chi2pdf (x , 5) ;
cdf1 = chi2cdf (x , 1) ; cdf2 = chi2cdf (x , 2) ; cdf3 = chi2cdf (x , 3) ; cdf5 = chi2cdf (x , 5) ;

f igure (1)
plot (x , pdf1 , x , pdf2 , x , pdf3 , x , pdf5)
ylabel (’ pdf (x) ’) ; t i t l e (’\ chiˆ2 pdf ’) ;
legend (’n=1 ’ , ’n=2 ’ , ’n=3 ’ , ’n=5 ’); axis ([0 ,4 ,0 ,1])

f igure (2)
plot (x , cdf1 , x , cdf2 , x , cdf3 , x , cdf5)
ylabel (’ cdf (x) ’) ; t i t l e (’\ chiˆ2 cdf ’)
legend (’n=1 ’ , ’n=2 ’ , ’n=3 ’ , ’n=5 ’ , ’ location ’ , ’ northwest ’) ; axis ([0 , 4 , 0 , 1 . 1])

SHA 5-10-16

7 COMMANDS TO WORK WITH PROBABILITY DISTRIBUTIONS 25

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

pd
f(

x)

χ2
 pdf

n=1
n=2
n=3
n=5

(a) χ2 distribution functions

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

cd
f(

x)

χ2
 cdf

n=1
n=2
n=3
n=5

(b) χ2 cumulative distribution functions

Figure 16: χ2 distributions

7.2.5 Exponential distribution

The exponential distribution4 with mean λ in MATLAB and Octave is given by

pdf(x) =
1

λ
exp(−x/λ)

cdf(x) = 1− exp(−x/λ)

and are computed by exppdf(x,lambda) and expcdf(x,lambda). Find the graphs for λ = 1, 0.5
and 0.2 in Figure 17.

0 1 2 3 4
0

0.5

1

1.5

2

pd
f(

x)

exponential pdf

λ =1
λ =0.5
λ =0.2

(a) probability distribution functions

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

cd
f(

x)

exponential cdf

λ =1
λ =0.5
λ =0.2

(b) cumulative distribution functions

Figure 17: Exponential distributions

4Some references use the factor 1/λ instead of λ, i.e. pdf(x) = λ exp(−xλ) and cdf(x) = 1 − exp(−xλ).

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 26

8 Commands for Confidence Intervals and Hypothesis Testing

In this section a few command to determine confidence intervals and testing of hypothesis are
shown. My personal preference is clearly to work with confidence intervals. Is is (too) easy to
abuse the commands for hypothesis testing and computing P values.

8.1 Confidence Intervals

A confidence interval contains the true parameter µ to be examined with a certain level of confi-
dence, as illustrated in Figure 18. One has to chose a level of significance α. Then the confidence
interval has to contain the parameter with a level of confidence (probability) of p = 1−α. Typical
values for α are 0.05 = 5% or 0.01 = 1% .

0 < α < 1 : level of significance

p = 1− α : level of confidence

-
x̄ x̄+ c1x̄− c1 x̄+ c2x̄− c2 ︸ ︷︷ ︸

95% chance this intervall contains µ

︷ ︸︸ ︷99% chance this intervall contains µ

Figure 18: Confidence intervals at levels of significance α = 0.05 and α = 0.01

For the following examples we repeatedly use a data set to illustrate the commands. The
numbers may represent the number of defects detected on a sample of 17 silicon wafers selected at
random from a large production.

WaferDefects.txt
7 16 19 12 15 9 6 16 14 7 2 15 23 15 12 18 9

8.1.1 Estimating the mean value µ, with (supposedly) known standard deviation σ

Assume to have data with an unknown mean value µ, but a known standard deviation σ. This is
a rather unusual situation, in most cases the standard deviation is not known and one has to use
the similar computations in the next section 8.1.2. For sake of simplicity start with a known value
of σ.

A sampling of n data points leads to xi and you want to determine the mean value µ. According
to the central limit theorem the random variable

X̄ =
1

n

n∑
i=1

Xi

is approximated by a normal distribution with mean µ and standard deviation σ/
√
n. Now we seek

a value u such that the green area in Figure 19(a) equals (1−α), where α is a small positive value.
This implies that the true (unknown) value of µ is with a high probability in the green section in
Figure 19(a). This is a two–sided confidence interval. If we want to know whether the true value
of µ is below (or above) a certain threshold we use a similar argument to determine the one–sided
confidence interval in Figure 19(b) .

• To determine a two–sided confidence interval for the significance level α examine Figure 19(a)
and proceed as follows:

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 27

1. Determine u such that

(1− α) = P (−u < U < u) =
1√
2π

∫ u

−u
e−x

2/2 dx

α

2
= P (U < −u) =

1√
2π

∫ −u
−∞

e−x
2/2 dx = cdf(−u)

= P (+u < U) =
1√
2π

∫ +∞

+u
e−x

2/2 dx = 1− cdf(+u)

With MATLAB/Octave this value may be determined by u = - norminv(alpha/2) or by
u = norminv(1-alpha/2).

2. Then determine the estimator x̄ = 1
n

∑n
i=1 xi and the two–sided confidence interval is

given by [x̄− uσ√
n
, x̄+ uσ√

n
], i.e.

P (x̄− uσ√
n
< x < x̄+

uσ√
n

) = 1− α

• For the above example we may use the code

data = load (’ WaferDefects . txt ’) ;
N = length (data)
% we use the eximated variance as the supposedly given value
sigma = std (data) ; % this i s NOT a r e a l i s t i c s i tuat ion
alpha = 0.05 % choose the s ign i f i cance l eve l
u = −norminv(alpha/2)
x bar = mean(data) ;
ConfidenceInterval = [x bar − u∗sigma/sqrt (N) , x bar + u∗sigma/sqrt (N)]
−−>
ConfidenceInterval = [10.082 15.212]

You may also use the command ztest() from Section 8.2.2 to compute the confidence interval.

The above code can be reused with a smaller significance level alpha = 0.01, leading to a
wider confidence interval of [9.2760 , 16.0182] .

• To determine the one–sided confidence interval for the significance level α examine Fig-
ure 19(b) and proceed as follows:

1. Determine u such that

(1− α) = P (U < u) =
1√
2π

∫ u

−∞
e−x

2/2 dx = cdf(u)

α = P (u < U) =
1√
2π

∫ +∞

u
e−x

2/2 dx = 1− cdf(u)

With MATLAB/Octave this value may be determined by u = norminv(1-alpha).

2. Determine the estimator x̄ = 1
n

∑n
i=1 xi. Now one–sided confidence interval is given by

[−∞ , x̄+ uσ√
n

], i.e.

P (x < x̄+
uσ√
n

) = 1− α

• For the above example we may use the following code.

SHA 5-10-16

xudong.zhang
Highlight

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 28

data = load (’ WaferDefects . txt ’) ;
N = length (data)
% we use the estimated variance as the supposedly given value
sigma = std (data) ; % this i s NOT a r e a l i s t i c s i tuat ion
alpha = 0.05 % choose the s ign i f i cance l eve l
u = norminv(1−alpha)
x bar = mean(data) ;
UpperLimit = x bar + u∗sigma/sqrt (N)
−−>
UpperLimit = 14.800

-4 -2 0 2 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

x

pd
f

-u +u

α/2α/2

P

(a) two–sided confidence interval

-4 -2 0 2 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

x

pd
f

+u

α

P

(b) one–sided confidence interval

Figure 19: Two- and one–sided confidence intervals

8.1.2 Estimating the mean value µ, with unknown standard deviation σ

Assuming you have data Xi all given by the same normal distribution N(µ, σ) with mean µ and
standard deviation σ. Now the unbiased estimators

X̄ =
n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

are not independent. The distribution of the random variable

Z =
µ− X̄
S/
√
n

is a Student-t distribution with n− 1 degrees of freedom, see Section 7.2.3.

• To determine a two–sided confidence interval with significance level α examine Figure 19(a)
and use

(1− α) = P (−u < Z < +u) = P (−u < µ− X̄
S/
√
n
< +u)

= P (−u S√
n
< µ− X̄ < +u

S√
n

) = P (X̄ − u S√
n
< µ < X̄ + u

S√
n

)

The value of u is determined by

α

2
=

∫ −u
−∞

pdf(x) dx = cdf(−u)

SHA 5-10-16

xudong.zhang
Highlight

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 29

and computed by u = - tinv(alpha/2,n-1). With the estimators

x̄ =
1

n

n∑
i=1

xi and σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2

the two–sided confidence interval is given by[
x̄− u σ√

n
, x̄+ u

σ√
n

]
• For the above example we may use the code

data = load (’ WaferDefects . txt ’) ;
N = length (data)
alpha = 0.05 % choose the s ign i f i cance l eve l
u = −tinv (alpha/2 ,N−1)
x bar = mean(data) ;
sigma = std (data) ;
ConfidenceInterval = [x bar − u∗sigma/sqrt (N) , x bar + u∗sigma/sqrt (N)]
−−>
ConfidenceInterval = [9.8727 15.4215]

Observe that this confidence interval is slightly wider that the one with (supposedly) known
standard deviation σ. This is reasonable, since we have less information at our disposition.

• To determine the one–sided confidence interval for the significance level α examine Fig-
ure 19(b) and proceed as follows:

1. Determine u such that

(1− α) = P (U < u) =

∫ u

−∞
pdf(x) dx = cdf(u)

With MATLAB/Octave this value may be determined by u = tinv(1-alpha,n-1).

2. With the estimators

x̄ =
1

n

n∑
i=1

xi and σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2

the one–sided confidence interval is given by [−∞ , x̄+ uσ√
n

], i.e.

P (x < x̄+
uσ√
n

) = 1− α

• For the above example we may use the following code.

data = load (’ WaferDefects . txt ’) ;
N = length (data)
alpha = 0.05 % choose the s ign i f i cance l eve l
u = tinv(1−alpha ,N−1)
x bar = mean(data) ;
sigma = std (data) ;
UpperLimit = x bar + u∗sigma/sqrt (N)
−−>
UpperLimit = 14.932

Observe that for large samples (N � 1) the Student-t distribution is close to the standard
normal distribution and the results for the confidence intervals for known or unknown standard
deviation σ differ very little.

SHA 5-10-16

xudong.zhang
Highlight

xudong.zhang
Highlight

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 30

8.1.3 Estimating the variance for nomaly distributed random variables

Assume that Xi are random variables with a normal distribution N(µ, σ), i.e. with mean µ and
standard deviation σ. An unbiased estimator for the variance σ2 is given by

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

This is a random variable whose distribution is related to the χ2 distribution. The modified variable

Y =
(n− 1)S2

σ2
=

1

σ2

n∑
i=1

(Xi − X̄)2

follows a χ2 distribution with n− 1 degrees of freedom. To determine confidence intervals we have
to observe that this distribution is not symmetric, see Section 7.2.4. Obviously we can not obtain
negative values. The values of χ2

α/2,n−1 and χ2
1−α/2,n−1 are characterized by

(1− α) = P (χ2
α/2,n−1 < Y < χ2

1−α/2,n−1) =

∫ χ2
1−α/2,n−1

χ2
α/2,n−1

pdf(x) dx

α

2
=

∫ χ2
α/2,n−1

0
pdf(x) dx = cdf(χ2

α/2,n−1)

α

2
=

∫ +∞

χ2
1−α/2,n−1

pdf(x) dx = 1− cdf(χ2
1α/2,n−1)

and thus can be computed by chi2inv(alpha/2,n-1) resp. chi2inv(1-alpha/2,n-1). Since

(1− α) = P

(
χ2
α/2,n−1 <

(n− 1)S2

σ2
< χ2

1−α/2,n−1

)
= P

(
χ2
α/2,n−1

(n− 1)S2
<

1

σ2
<
χ2

1−α/2,n−1

(n− 1)S2

)

= P

(
(n− 1)S2

χ2
1−α/2,n−1

< σ2 <
(n− 1)S2

χ2
α/2,n−1

)

and we have a confidence interval for the variance σ2[
(n− 1)S2

χ2
1−α/2,n−1

,
(n− 1)S2

χ2
α/2,n−1

]

or for the standard deviation σ  √
n− 1S√
χ2

1−α/2,n−1

,

√
n− 1S√
χ2
α/2,n−1


For the above example we use

data = load (’ WaferDefects . txt ’) ;
N = length (data) ;
alpha = 0.05 ; % choose the s ign i f i cance l eve l
chi2 low = chi2inv (alpha/2 ,N−1);
chi2 high = chi2inv(1−alpha/2 ,N−1);

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 31

sigma = std (data)
ConfidenceIntervalVariance = sigmaˆ2∗(N−1)∗[1/ chi2 high , 1/chi2 low]
ConfidenceIntervalStd = sqrt (ConfidenceIntervalVariance)
−−>
sigma = 5.3961
ConfidenceIntervalVariance = [16.151 67.444]
ConfidenceIntervalStd = [4.0188 8.2124]

Observe that the confidence interval for the standard deviation is not symmetric about the esti-
mated value of 5.3961 .

8.1.4 Estimating the parameter p for a binomial distribution

For random variable Xi with a binomial distribution with parameter 0 < p < 1 we use

P̄ =
k̄

n
=

1

n

n∑
i=1

Xi

as an unbiased estimator for the parameter p. To construct a confidence interval for p we seek a
lower limit pl and an upper limit pu such that

P (pl < p < pu) = 1− α

For this to happen we need to solve the equations

P (Sn > k̄) =

n∑
i=k̄+1

(
n

i

)
pil (1− pl)n−i = 1− cdf(k̄, pl) =

α

2

P (Sn ≤ k̄) =

k̄−1∑
i=1

(
n

i

)
piu (1− pu)n−i = cdf(k̄, pu) =

α

2

Thus we have to solve the equations 1 − cdf(k̄, pl) = α/2 and cdf(k̄, pu) = α/2 for the unknowns
pl and pu. This can be done using the command fzero(). Use help fzero to obtain information
about this command, used to solve a single equation.

Assuming that out of 1000 samples only 320 objects satisfy the desired property. The estimator
for p is p̄ = 320

1000 = 0.32. Then use the code below to determine the two–sided confidence interval
[pl , pu] at significance level α = 0.05.

N = 1000; Yes = 320; alpha = 0.05 ;
p low = fzero (@(p)1−binocdf (Yes−1,N,p)−alpha /2 ,[0 1]) ;
p up = fzero (@(p) binocdf (Yes ,N,p)−alpha /2 , [0 , 1]) ;
Interval Binom = [p low p up]
−−>
Interval Binom = [0.29115 0.34991]

Since N = 1000 is large and p is neither close to 1 or 0 we can approximate the binomial distribution

by a normal distribution with mean 0.32 and standard deviation σ =

√
p (1−p)
N . The resulting

confidence interval has to be similar to the above, as confirmed by the code below.

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 32

N = 1000; Yes = 320; alpha = 0.05 ;
% use an approximative normal distr ibut ion
p = Yes/N;
u = −norminv(alpha /2);
sigma = sqrt (p∗(1−p)/N)
Interval Normal = [p−u∗sigma p+u∗sigma]
−−>
Interval Normal = [0.29109 0.34891]

In the above example a two–sided interval is constructed. There are applications when a one–
sided interval is required. Examine a test of 100 samples, with only 2 samples failing. Now
determine an upper limit for the fail rate, using a confidence level of α = 0.01. The parameter p
(the fail rate) is too large if the probability to detect 2 or less fails is smaller than α. Thus the
upper limit pu satisfies the equation

P (Sn ≤ 2) =
2∑
i=0

(
100

i

)
piu(1− pu)100−i = pdf(2, pu) = α

The code below shows that the fail rate is smaller than ≈ 8%, with a probability of 1− α = 99% .

N = 100; Fail = 2; alpha = 0.01 ;
p up = fzero (@(p) binocdf (Fail ,N,p)−alpha , [0 , 1]) ;
−−>
p up = 0.081412

Rerunning the above code with α = 5% leads to a fail rate smaller than ≈ 6%, with a probability of
95% . The maximal fail rate is smaller now, since we accept a lower probability. An approximation
by a normal distribution is not justified in this example, since p is rather close to 0 . The (wrong)
result for the fail rate would be ≈ 5.3% for α = 1% .

8.2 Hypothesis Testing, P Value

MATLAB and Octave provide a set of command to use the method of testing a hypothesis, see Table 9.
The commands can apply one–sided and two–sided tests, and may determine a confidence interval.

ztest() testing for the mean, with known σ

ttest() testing for the mean, with unknown σ

binotest() testing for p, using a binomial distribution

Table 9: Commands for testing a hypothesis

8.2.1 A coin flipping example

When flipping a coin you (usually) assume that the coin is fair, i.e. “head” and “tail” are equally
likely to show, or the probability p for “head” is p = 0.5. This is a Null Hypothesis.

Null hypothesis H0 : p =
1

2

The corresponding alternative Hypothesis is

Alternative hypothesis H1 : p 6= 1

2

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 33

By flipping a coin 20 times you want to decide whether the coin is fair. Choose a level of sig-
nificance α and determine the resulting domain of acceptance A. In this example the domain
of acceptance is an interval containing 10 . If the actual number of heads is in A you accept the
hypothesis p = 1

2 , otherwise you reject it. The probability of rejecting H0, even if is is true, should
be α, i.e. α is the probability of committing a type 1 error. You might also commit a type 2 error,
i.e. accept H0 even if it is not true. The probability of committing a type 2 error is β and 1− β is
called the power of the test. The relations are shown in Table 10.

H0 is true H1 is true

H0 accepted 1− α β

correct type 2 error

H0 rejected α 1− β
type 1 error correct

Table 10: Errors when testing a hypothesis with level of significance α

Obviously the choice of the level of significance has an influence on the result.

• If 0 < α < 1 is very small:

– The domain of acceptance A will be large, and we are more likely to accept the hypoth-
esis, even if it is wrong. Thus we might make a type 2 error.

– The probability to reject a true hypothesis is small, given by α. Thus we are not very
likely to make a type 1 error.

• If 0 < α < 1 is large:

– The domain of acceptance A will be small, and we are more likely to reject the hypothesis,
even if it is true. Thus we might make a type 1 error.

– The probability to accept a false hypothesis is small. Thus we are not very likely to
make a type 2 error.

The smallest value of α for which the null hypothesis H0 is rejected, based on the given sampling,
is called the P value.

8.2.2 Testing for the mean value µ, with (supposedly) known standard deviation σ

Assume to have normally distributed data with an unknown mean value µ, but known standard
deviation σ, just as in Section 8.1.1. The null hypothesis to be tested is that the mean value equals
a given value µ0. For a given level of significance α the domain of acceptance A is characterized

Null hypothesis H0 mean µ = µ0

Alternative hypothesis H1 mean µ 6= µ0

by
1− α = P (X̄ ∈ A) = P (µ0 − a ≤ X̄ ≤ µ0 + a)

where X̄ = 1
n

∑n
i=1Xi is an unbiased estimator of the true mean value µ. Using the central limit

theorem we know that the random variable U = X̄−µ
σ/
√
n

follows a standard normal distribution.

Using this we compute a by a = -norminv(alpha/2), i.e.

α

2
=

∫ −a
−∞

pdf(x) dx

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 34

and then the domain of acceptance is given by

A = [µ0 − a
σ√
n
, µ0 + a

σ√
n

]

The P value is characterized by

1− αmin = P (|X̄ − µ0| ≥ |x̄− µ0|)
P = αmin = P (X̄ < µ0 − |x̄− µ0|) + P (X̄ > µ0 + |x̄− µ0|)

= 2P (X̄ < µ0 − |x̄− µ0|)

and thus can be computed by P = 2∗normcdf(−|x̄−µ0|
√
n
σ). This is easily coded in MATLAB/Octave.

Observe that P also gives the probability that X̄ is further away from the mean value µ0 than the
already observed x̄, which is used for the test. This is equal to the the total probability of all events
less likely than the observed x̄.

As example we want to test the hypothesis that the average number of defects in the wafers for
the data set introduced on page 26 is given by 14.

data = load (’ WaferDefects . txt ’) ;
mu = mean(data) % the mean of the sampling
n = length (data) ;
mu0 = 14; % test against th i s mean value
sigma = sigma(data) ; % assumed value of the standard deviation
alpha = 0.05 ; % choose l eve l of s i gn i f i cance

a = −norminv(alpha /2);
i f abs (mu−mu0)<a∗sigma/sqrt (n)

disp (’H 0 not rejected , might be true ’)
e l s e

disp (’H 0 rejected , probably fa l se ’)
end%i f
P value = 2∗normcdf(−abs (mu−mu0)∗ sqrt (n)/sigma)
−−>
mu = 12.647
H 0 not rejected , might be true
P value = 0.30124

Observe that the average µ of the sample is well below the tested value of µ0 = 14. Since the size
of the sample is rather small, we do not have enough evidence to reject the hypothesis. This does
not imply that the hypothesis is true. The computed P value is larger than the chosen level of
significance α = 0.05, which also indicated that the hypothesis can not be rejected.

With the command ztest() you can test this hypothesis. It will in addition determine the
confidence interval using the results from Section 8.1.1.

[H, PVAL, CI] = ztest (data , mu0, sigma)
−−>
H = 0
PVAL = 0.30124
CI = 10.082 15.212

In the documentation of ztest find the explanation for the results.

• Since H = 0 the null hypothesis is accepted, i.e. it might be true.

• Since the P value of 0.3 is larger than α = 0.05 the null hypothesis is accepted.

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 35

• The confidence interval [10.082 , 15.212] is determined by the method in Section 8.1.1.

The default value for the level of significance is α = 0.05 = 5%. By providing more arguments you
can used different values, e.g. [H, PVAL, CI] = ztest(data,mu0,sigma,’alpha’,0.01) .

8.2.3 Testing for the mean value µ, with unknown standard deviation σ

Assume to have normally distributed data with an unknown mean value µ and standard deviation
σ, just as in Section 8.1.2. The null hypothesis to be tested is that the mean value equals a given
value µ0. For a given level of significance α the domain of acceptance A is characterized by

Null hypothesis H0 mean µ = µ0

Alternative hypothesis H1 mean µ 6= µ0

1− α = P (X̄ ∈ A) = P (µ0 − a ≤ X̄ ≤ µ0 + a)

where X̄ = 1
n

∑n
i=1Xi is an unbiased estimator of the true mean value µ an S2 = 1

n−1

∑n
i=1(Xi −

X̄)2 is an estimator of the variance σ2. Now use that the random variable Z = X̄−µ
S/
√
n

fol-

lows a Student-t distribution with n − 1 degrees of freedom. Using this we compute a by a =

-tinv(alpha/2,n-1), i.e.
α

2
=

∫ −a
−∞

pdf(x) dx

and then the domain of acceptance is given by

A = [µ0 − a
σ√
n
, µ0 + a

σ√
n

]

The P value is characterized by

1− αmin = P (|X̄ − µ0| ≥ |x̄− µ0|)
P = αmin = P (X̄ < µ0 − |x̄− µ0|) + P (X̄ > µ0 + |x̄− µ0|)

= 2P (X̄ < µ0 − |x̄− µ0|)

and thus can be computed by P = 2∗tcdf(−|x̄−µ0|
√
n
σ , n−1). This is easily coded in MATLAB/Octave.

As example we want to test the hypothesis that the average number of defects in the wafers for
the data set introduced on page 26 is given by 14.

data = load (’ WaferDefects . txt ’) ;
mu = mean(data) % the mean of the sampling
n = length (data) ;
mu0 = 14; % test against th i s mean value
sigma = std (data) ; % assumed value of the standard deviation
alpha = 0.05 ; % choose l eve l of s i gn i f i cance

a = −tinv (alpha/2 ,n−1);
i f abs (mu−mu0)<a∗sigma/sqrt (n) disp (’H 0 not rejected , might be true ’)
e l s e disp (’H 0 rejected , probably fa l se ’)
end%i f
P value = 2∗ tcdf(−abs (mu−mu0)∗ sqrt (n)/sigma ,n−1)
−−>
mu = 12.647
H 0 not rejected , might be true
P value = 0.31662

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 36

Observe that the average µ of the sample is well below the tested value of µ0 = 14. Since the size
of the sample is rather small, we do not have enough evidence to reject the hypothesis. This does
not imply that the hypothesis is true. The computed P value is larger then the chosen level of
significance α = 0.05, which also indicated that the hypothesis can not be rejected.

With the command ttest() you can test this hypothesis. It will also compute the confidence
interval5 by the results from Section 8.1.2.

[H, PVAL, CI] = ttes t (data ,mu0)
−−>
H = 0
PVAL = 0.31662
CI = 9.8727 15.4215

In the documentation of ttest find the explanation for the results.

• Since H = 0 the null hypothesis is accepted, i.e. it might be true.

• Since the P value of 0.32 is larger than α = 0.05 the null hypothesis is accepted.

• The two–sided confidence interval [9.8727 , 15.4215] is determined by the method in Sec-
tion 8.1.2.

The default value for the level of significance is α = 0.05 = 5%. By providing more arguments you
can used different values, e.g. [H, PVAL, CI] = ttest(data,mu0,’alpha’,0.01) .

8.2.4 One–sided testing for the mean value µ, with unknown standard deviation σ

One can also apply one sided tests. Assume that we claim the the actual mean value µ is below a
given value µ0. For a given level of significance α the domain of acceptance A is characterized by

Null hypothesis H0 mean µ ≤ µ0

Alternative hypothesis H1 mean µ > µ0

1− α = P (X̄ ∈ A) = P (X̄ ≤ µ0 + a)

Using this we compute a by a = tinv(1-alpha,n-1), i.e.

1− α =

∫ a

−∞
pdf(x) dx or α =

∫ ∞
a

pdf(x) dx

and then the domain of acceptance is given by

A = [−∞ , µ0 + a
σ√
n

]

The P = αmin value is characterized by

αmin = P (X̄ ≥ x̄) = 1− P (X̄ ≤ µ0 + (x̄− µ0))

and thus can be computed by P = 1−tcdf((x̄−µ0)
√
n
σ , n−1). This is easily coded in MATLAB/Octave.

As example we want to test the hypothesis that the average number of defects in the wafers for
the data set introduced on page 26 is smaller than 14.

5The current version of ttest() from the package statistics 1.2.4 in Octave does not produce the correct confidence
interval. The bug is reported, fixed and will show up in the next release of the package statistics. This author has a
patched version.

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 37

data = load (’ WaferDefects . txt ’) ;
mu = mean(data) % the mean of the sampling
n = length (data) ;
mu0 = 14; % test against th i s mean value
sigma = std (data) ; % value of the standard deviation
alpha = 0.05 ; % choose l eve l of s i gn i f i cance

a = tinv(1−alpha ,n−1);
i f mu < mu0+a∗sigma/sqrt (n) disp (’H 0 not rejected , might be true ’)
e l s e disp (’H 0 rejected , probably fa l se ’)
end%i f
P value = 1 − tcdf ((mu−mu0)∗ sqrt (n)/sigma ,n−1)
−−>
mu = 12.647
H 0 not rejected , might be true
P value = 0.84169

Observe that the average µ of the sample is well below the tested value of µ0 = 14. Thus the
hypothesis is very likely to be correct, which is confirmed by the above result.

With the command ttest() you can test this hypothesis. It will also compute the one–sided
confidence interval.

[H, PVAL, CI] = ttes t (data ,mu0, ’ ta i l ’ , ’ right ’)
−−>
H = 0
PVAL = 0.84169
CI = 10.362 −Inf

• Since H = 0 the null hypothesis is accepted, i.e. it might be true.

• Since the P value of 0.84 is larger than α = 0.05 the null hypothesis is accepted.

• The two–sided confidence interval [10.362 , +∞] is determined by the method in Section 8.1.2.

The default value for the level of significance is α = 0.05 = 5%. By providing more arguments you
can used different values, e.g. [H, PVAL, CI] = ttest(data,mu0,’tail’,’right’,’alpha’,0.01) .

8.2.5 Testing the variance for normally distributed random variables

8.2.6 Two–sided test for the parameter p for a binomial distribution

By flipping a coin 1000 times you observe 475 “heads”. Now there are different cases that you
might consider for the parameter p, the ratio of “heads” and total number of flips.

Situation Hypothesis Test

“head” and “tail” are equally likely p = 1
2 two–sided

“head” is less likely than “tail” p ≤ 1
2 one–sided

“head” is more likely than “tail” p ≥ 1
2 one–sided

The methods and commands to be examined below will lead to statistical answers to the above
questions.

Assume to have data given by a binomial distribution with parameter p, i.e. we have N data
points and each point has value 1 with probability p and 0 otherwise. The null hypothesis to be

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 38

Null hypothesis H0 p = p0

Alternative hypothesis H1 p 6= p0

tested is that the parameter p equals a given value p0. Let k =
∑N

i=1Xi and X̄ = k
N = 1

N

∑N
i=1Xi

be the result of a sample, then X̄ is an estimator of p. For a given level of significance α the
domain of acceptance A is characterized by

1− α ≤ P (X̄ ∈ A) = P (Alow ≤ X̄ ≤ Ahigh)

α ≥ P (X̄ /∈ A) = P (X̄ < Alow) + P (Ahigh < X̄) = cdf(Alow) + 1− cdf(Ahigh)

where cdf() is the cumulative density function for the binomial distribution with parameter p0.
This condition translates to

cdf(Alow) ≤ α

2
and 1− cdf(Ahigh) ≤ α

2

Since the binomial distribution is a discrete distribution we can not insist on the limiting equality,
but have to work with inequalities, leading to

binocdf(N ·Alow, N, p0) ≤ α

2
and 1− binocdf(N ·Ahigh, N, p0) ≤ α

2

Using MATLAB/Octave commands this can be solved by

Alow = (binoinv(
α

2
, N, p0))/N

Ahigh = binoinv(1− α

2
, N, p0)/N

The null hypothesis H0 : p = p0 is accepted if

Alow ≤
k

N
≤ Ahigh

Since the P value is also given by the total probability of all events less likely than the observed k,
we have an algorithm to determine P .

1. Compute the probability that the observed number k of “heads” shows by pk = binopdf(k,N, p0).

2. Of all pj = binopdf(j,N, p0) add those that are smaller or equal to pk.

3. This can be packed into a few lines of code.

p k = binopdf (k ,n , p0) ;
p a l l = binopdf ([0 : n] , n , p0) ;
p = sum(p a l l (f ind (p a l l <= p k))) ;

As an example consider flipping a coin 1000 times and observe 475 “heads”. To test whether
this coin is fair make the hypothesis p = 0.5 and test with a significance level of α = 0.05.

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 39

N = 1000 % number of coins f l ipped
p0 = 0 .5 ; % hypothesis to be tested
alpha = 0.05 ; % leve l of s i g i f i c ance
Heads = 475 % number of observed heads

A low = (binoinv (alpha/2 ,N, p0))/N;
A high = binoinv(1−alpha/2 ,N, p0)/N;
DomainOfAcceptance = [A low , A high]
i f (Heads/N>= A low)&&(A high >= Heads/N) disp (’H 0 not rejected , might be true ’)
e l s e disp (’H 0 rejected , probably fa l se ’)
end%i f
p k = binopdf (Heads ,N, p0) ; p a l l = binopdf ([0 :N] ,N, p0) ;
P value = sum(p a l l (f ind (p a l l <= p k)))
−−>
DomainOfAcceptance = [0.469 0.531]
H 0 not rejected , might be true
P value = 0.12121

The above can be compared with the confidence interval determined in Section 8.1.4, see page 31.

p low = fzero (@(p)1−binocdf (Heads−1,N,p)−alpha /2 , [0 , 1]) ;
p up = fzero (@(p) binocdf (Heads ,N,p)−alpha /2 , [0 , 1]) ;
Interval Binom = [p low p up]
−−>
Interval Binom = [0.44366 0.50649]

Since the value of p = 1
2 is inside the interval of confidence we conclude that the coin might be fair.

Observe that the confidence interval is built around the estimated expected value p = 0.475, while
the domain of acceptance is built around the tested value p0 = 1

2 .

The above result can be generated by the Octave command binotest()6.

[h , p val , c i] = binotest (475 ,1000 ,0.5)
−−>
h = 0
p val = 0.12121
c i = [0.44366 0.50649]

With MATLAB the command binofit() determines the estimator for the parameter p and the
confidence interval. Observe that the hypothesis is not tested and the P value not computed. Thus
the command binofit() uses results from Section 8.1.4 on page 31.

[p , c i] = bino f i t (475 ,1000 ,0.05)
−−>
p = 0.4750
c i = 0.4437 0.5065

8.2.7 One–sided test for the parameter p for a binomial distribution

The above method can also be used for one–sided tests. For a given level of significance α the

6The code in binotest.m is written, tested and will appear with the next release of the package statistics.

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 40

Null hypothesis H0 p ≤ p0

Alternative hypothesis H1 p > p0

domain of acceptance A is characterized by

1− α ≤ P (X̄ ∈ A) = P (X̄ ≤ Ahigh)

α ≥ P (X̄ /∈ A) = P (Ahigh < X̄) = 1− cdf(Ahigh)

This condition translates to 1−cdf(Ahigh) ≤ α, leading to 1−binocdf(N ·Ahigh, N, p0) ≤ α. Using
MATLAB/Octave commands to can be solved by

Ahigh = binoinv(1− α,N, p0)/N

The null hypothesis H0 : p ≤ p0 is accepted if k
N ≤ Ahigh . Since the P value is defined as the

smallest value of the level of significance α for which the null hypothesis is rejected we use

P = αmin = 1− binocdf(k − 1, N, p0)

For the above coin flipping example we claim that the coin is less likely to show “heads” than
“tail”.

N = 1000 % number of coins f l ipped
p0 = 0 .5 ; % hypothesis to be tested
alpha = 0.05 ; % leve l of s i g i f i c ance
Heads = 475 % number of observed heads

A high = binoinv(1−alpha ,N, p0)/N;
DomainOfAcceptance = [0 , A high]
i f (A high >= Heads/N) disp (’H 0 not rejected , might be true ’)
e l s e disp (’H 0 rejected , probably fa l se ’)
end%i f
P value = 1−binocdf (Heads−1,N, p0)
−−>
DomainOfAcceptance = [0 0.52600]
H 0 not rejected , might be true
P value = 0.94663

The result states that the coin might be more likely to show “heads”. The observed value of
p ≈ 0.475 is well within the domain of acceptance A = [0 , 0.526].

The above result can be generated by the Octave command binotest.

[h , p val , c i] = binotest (475 ,1000 ,0.5 , ’ ta i l ’ , ’ l e f t ’)
−−>
h = 0
p val = 0.94663
c i = [0 0.50150]

Obviously we can also test whether the coin is less likely to show “heads”. Since the arguments

Null hypothesis H0 p ≥ p0

Alternative hypothesis H1 p < p0

are very similar to the above we just show the resulting code.

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 41

A low = binoinv (alpha ,N, p0)/N;
DomainOfAcceptance = [A low , 1]
i f (A low <= Heads/N) disp (’H 0 not rejected , might be true ’)
e l s e disp (’H 0 rejected , probably fa l se ’)
end%i f
P value = binocdf (Heads ,N, p0)
−−>
DomainOfAcceptance = [0.474 1]
H 0 not rejected , might be true
P value = 0.060607

The result states that the coin might be less likely to show “heads”. But the observed value of
p ≈ 0.475 is barely within the domain of acceptance A = [0.474 , 1]. The P value of P ≈ 0.06 is
just above α = 5%. If we increase α slightly, i.e. be more tolerant towards errors of the first type,
the hypothesis would be rejected.

The above result can be generated by the Octave command binotest.

[h , p val , c i] = binotest (475 ,1000 ,0.5 , ’ ta i l ’ , ’ right ’)
−−>
h = 0
p val = 0.060607
c i = [0.44860 1]

Observe that in the previous examples for 475 “heads” on 1000 coin flips none of the three null
hypothesis p = 1

2 , p ≤ 1
2 or p ≥ 1

2 is rejected. This is clearly illustrating that we do not prove that
one of the hypothesis is correct. All we know is that they are not very likely to be false.

8.2.8 Testing for the parameter p for a binomial distribution for large N

If N and N p0 (1 − p0) are large (e.g. N > 30 and N p0 (1 − p0) > 10) the binomial distribution
of Y = 1

N

∑N
i]1Xi with parameter p0 can be approximated by a normal distribution with mean p0

and standard deviation σ =

√
p0 (1−p0)

N . Thus we can replace the binomial distribution in the above
section by this normal distribution and recompute the domains of acceptance and the P values.
The formulas to be used are identical to the ones in Section 8.2.2. For the confidence intervals use
the tools from Section 8.1.1.

• Two–sided test with null hypothesis H0 : p = p0.

N = 1000 % number of coins f l ipped
p0 = 0 .5 ; % hypothesis to be tested
alpha = 0.05 ; % leve l of s i g i f i c ance
Heads = 475 % number of observed heads
sigma = sqrt (p0∗(1−p0)/N) ; % standard deviation for p

u = −norminv(alpha /2);
DomainOfAcceptance = [p0−u∗sigma , p0+u∗sigma]
i f (abs (Heads/N−p0)<u∗sigma) disp (’H 0 not rejected , might be true ’)
e l s e disp (’H 0 rejected , probably fa l se ’)
end%i f
P value = 2∗normcdf(−abs (Heads/N−p0)/sigma)
−−>
DomainOfAcceptance = [0.469 0.531]
H 0 not rejected , might be true
P value = 0.11385

SHA 5-10-16

8 COMMANDS FOR CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 42

• One–sided test with null hypothesis H0 : p ≤ p0.

u = −norminv(alpha) ;
DomainOfAcceptance = [0 p0+u∗sigma]
i f (Heads/N<p0+u∗sigma) disp (’H 0 not rejected , might be true ’)
e l s e disp (’H 0 rejected , probably fa l se ’)
end%i f
P value = 1−normcdf ((Heads/N−p0)/sigma)
−−>
DomainOfAcceptance = [0 0.52601]
H 0 not rejected , might be true
P value = 0.94308

• One–sided test with null hypothesis H0 : p ≥ p0.

u = −norminv(alpha) ;
DomainOfAcceptance = [p0−u∗sigma 1]
i f (Heads/N>p0−u∗sigma) disp (’H 0 not rejected , might be true ’)
e l s e disp (’H 0 rejected , probably fa l se ’)
end%i f
P value = normcdf ((Heads/N−p0)/sigma)
−−>
DomainOfAcceptance = [0.47399 1]
H 0 not rejected , might be true
P value = 0.056923

• All of the above results are very close to the numbers obtained by the binomial distribution
in Sections 8.2.6 and 8.2.7. This is no surprise, since N = 1000 is large enough and N p0 (1−
p0) = 250 � 10 and thus the normal distribution is a good approximation of the binomial
distribution.

SHA 5-10-16

Index

alternative hypothesis, 32

bar, 4, 5
barh, 4, 5
binocdf, 19, 31, 32, 38–40
binofit, 39
binoinv, 38, 40
binopdf, 17, 19
binornd, 15
binostat, 20
binotest, 32, 39–41
boxplot, 4, 9

cdf, 17
chi2cdf, 24
chi2inv, 30
chi2pdf, 24
coin flipping, 37
confidence interval, 15, 26–32, 34, 36, 37, 39
corr, 8, 11, 12
corrcoef, 8
cov, 8, 10, 11

discrete cdf, 17
discrete pdf, 17
discrete rnd, 15
dlmread, 3
dlmwrite, 3
domain of acceptance, 33, 35, 36, 38–41

expcdf, 25
exppdf, 21, 25
exprnd, 15

fclose, 3
fgetl, 3
fopen, 3
fread, 3
fzero, 31, 32, 39

gls, 8

hist, 4
histc, 4, 5
histfit, 4, 5
histogram, 4
hygepdf, 17
hypothesis testing, 32

level of confidence, 26, 32
level of significance, 26–29, 31, 33–38, 40

linear regression, 12
LinearRegression, 8, 12
load, 3

mean, 8, 11
median, 8, 11
mode, 8

normcdf, 23, 34
norminv, 16, 27, 31, 34
normpdf, 21, 23
normrnd, 15
null hypothesis, 32

ols, 8, 15
one sided test, 36

P value, 32–38, 40, 41
package, statistics, 3
pdf, 17
pie, 4, 6
pie3, 4, 6
poisscdf, 20
poisspdf, 17, 20
polyfit, 15
power of test, 33

quantile, 8, 9

rand, 15
rande, 15
randg, 15
randn, 15
randp, 15
regress, 8, 14
regression, 12
rose, 4, 7

sprintf, 3
sscanf, 3
stairs, 4, 7
std, 8, 11
stem, 4, 6
stem3, 4, 7
strread, 3

tcdf, 23, 35, 36
textread, 3
tinv, 29, 35, 36
toolbox, statistics, 3
tpdf, 21, 23

43

INDEX 44

ttest, 32, 36, 37

unicdf, 21
unifpdf, 21
unipdf, 21
unique, 5, 6

var, 8, 9, 11

ztest, 32, 34

SHA 5-10-16

	Contents
	Figures
	Tables

	Introduction
	Commands to Load Data from Files
	Commands to Generate Graphics
	Histograms
	Bar Diagrams and Pie Charts
	stem(), stem3(), rose() and stairs()

	Data Reduction Commands
	mean(), std(), var(), median(), mode()
	For vectors: cov(), corr(), corrcoef()
	For matrices: mean(), std(), var(), median(), cov(), corr(), corrcoef()

	Performing Linear Regression
	Using LinearRegression()
	Using regress()
	Using polyfit() or ols()

	Generating Random Number
	Commands to Work with Probability Distributions
	Discrete distributions
	Bernoulli distribution and general discrete distributions
	Binomial distribution
	Poisson distribution

	Continuous distributions
	Uniform distribution
	Normal distribution
	Student-t distribution
	2 distribution
	Exponential distribution

	Commands for Confidence Intervals and Hypothesis Testing
	Confidence Intervals
	Estimating the mean value , with (supposedly) known standard deviation
	Estimating the mean value , with unknown standard deviation
	Estimating the variance for nomaly distributed random variables
	Estimating the parameter p for a binomial distribution

	Hypothesis Testing, P Value
	A coin flipping example
	Testing for the mean value , with (supposedly) known standard deviation
	Testing for the mean value , with unknown standard deviation
	One–sided testing for the mean value , with unknown standard deviation
	Testing the variance for normally distributed random variables
	Two–sided test for the parameter p for a binomial distribution
	One–sided test for the parameter p for a binomial distribution
	Testing for the parameter p for a binomial distribution for large N

	Index

