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Abstract: Liaoning Province, a crucial agricultural region in Northeast China, has endured frequent
drought disasters in recent years, significantly affecting both agricultural production and the ecologi-
cal environment. Conducting drought research is of paramount importance for formulating scientific
drought monitoring and prevention strategies, ensuring agricultural production and ecological safety.
This study developed a Comprehensive Joint Drought Index (CJDI) using the empirical Copula func-
tion to systematically analyze drought events in Liaoning Province from 1981 to 2020. Through the
application of MK trend tests, Morlet wavelet analysis, and run theory, the spatiotemporal variation
patterns and recurrence characteristics of drought in Liaoning Province were thoroughly investigated.
The results show that, compared to the three classic drought indices, Standardized Precipitation
Index (SPI), Evaporative Demand Drought Index (EDDI), and Standardized Precipitation Evapotran-
spiration Index (SPEI), CJDI has the highest accuracy in monitoring actual drought events. From
1981 to 2020, drought intensity in all regions of Liaoning Province (east, west, south, and north)
exhibited an upward trend, with the western region experiencing the most significant increase, as
evidenced by an MK test Z-value of −4.53. Drought events in Liaoning Province show clear seasonal-
ity, with the most significant periodic fluctuations in spring (main cycles of 5–20 years, longer cycles
of 40–57 years), while the frequency and variability of drought events in autumn and winter are
lower. Mild droughts frequently occur in Liaoning Province, with joint and co-occurrence recurrence
periods ranging from 1.0 to 1.8 years. Moderate droughts have shorter joint recurrence periods in
the eastern region (1.2–1.4 years) and longer in the western and southern regions (1.4–2.2 years),
with the longest co-occurrence recurrence period in the southern region (3.0–4.0 years). Severe and
extreme droughts are less frequent in Liaoning Province. This study provides a scientific foundation
for drought monitoring and prevention in Liaoning Province and serves as a valuable reference for
developing agricultural production strategies to adapt to climate change.

Keywords: copula theory; comprehensive joint drought index (CJDI); drought spatiotemporal
variation; Liaoning province; China

1. Introduction

Drought is a climatic phenomenon caused by a significant reduction in precipitation [1].
It is typically classified into four types based on its impact and extent: meteorological
drought, agricultural drought, hydrological drought, and socio-economic drought [2,3].
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Liaoning Province, a vital agricultural region in northeastern China, has long faced sig-
nificant impacts on agricultural production due to persistent drought issues. In recent
years, driven by global warming, the intensification of the hydrological cycle, along with
increased evaporation and changes in precipitation patterns, has extended the duration and
increased the frequency of drought events in Liaoning Province, resulting in insufficient
soil moisture and severely hindering crop growth. Particularly, droughts in spring and
summer often result in inadequate water supply during the sowing and growing periods of
crops, causing large-scale yield reductions and significantly impacting farmers’ economic
income [4–6]. Against this backdrop, investigating the spatiotemporal variation patterns of
drought in Liaoning Province, China, is of paramount importance for addressing drought
and alleviating its effects on agricultural production.

Drought indices are commonly used indicators to measure the severity of drought,
assessing the frequency, duration, and intensity of drought events. Prominent drought in-
dices include the Standardized Precipitation Index (SPI), the Evaporative Demand Drought
Index (EDDI), and the Standardized Precipitation Evapotranspiration Index (SPEI) [7–9].
The SPI is a drought index calculated based on standardized precipitation data, which
can effectively reflect precipitation anomalies over different time scales [10,11]. McKee
et al. [12] employed the SPI to assess drought conditions in the Midwestern United States.
The research results indicated that the SPI could accurately monitor both short-term and
long-term precipitation changes and successfully identify regional drought events, offering
strong support for drought warning and management. The EDDI is a drought index calcu-
lated based on evapotranspiration data, which can reflect changes in soil and crop moisture
conditions [13,14]. Noguera et al. [15] evaluated that the EDDI generated using a log-
logistic distribution has higher reliability compared to the original non-parametric method,
making it suitable for drought monitoring under different climatic conditions. However,
both of these drought indices consider only one factor, either precipitation or evaporation,
neglecting the multifaceted meteorological influences that contribute to drought. The SPEI
integrates precipitation and potential evapotranspiration, offering a more comprehensive
reflection of the water balance in the hydrological cycle, making it one of the key tools
in recent drought research [16,17]. Ismallianto et al. [18] conducted a drought analysis
in Sarawak, Malaysia, utilizing both the Standardized Precipitation Evapotranspiration
Index (SPEI) and the Standardized Precipitation Index (SPI). The study revealed that, com-
pared to the SPI, the SPEI more comprehensively reflects drought conditions, especially in
identifying severe to extreme drought events over longer time scales.

However, the SPEI uses a default linear combination method for drought assessment,
which has relatively fixed statistical characteristics. This implies that the SPEI might
not perform well under certain special climatic conditions, failing to accurately reflect
drought conditions [19]. Copula functions provide greater flexibility, enabling researchers
to choose the most appropriate type of Copula function (such as Gumbel, Clayton, or Frank)
according to the specific study area and objectives to better capture the regional climate and
drought characteristics [20]. For instance, Noguera et al. [15] employed the Gumbel Copula
to analyze sudden drought conditions in Spain. The study showed that the Gumbel Copula
more precisely captures abrupt droughts resulting from the combined effect of insufficient
precipitation and increased evaporation demand, providing a new method for drought
risk assessment under climate change. Won et al. [21] employed Copula to construct
a Combined Joint Drought Index (CJDI) that integrates the SPI and EDDI to monitor
meteorological droughts in South Korea. The study results indicated that CJDI could more
accurately reflect past drought events and predict future drought trends compared to the
SPI and EDDI. Additionally, Zhu et al. [22] employed the Copula function to quantify the
propagation time of meteorological drought to hydrological and vegetation droughts across
different seasons in the Ganjiang River Basin. The study found that the Copula method
could better describe the complex propagation mechanisms of meteorological drought,
providing scientific evidence for the development of effective water resource management
and drought warning systems. There are currently some studies on other drought modeling
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methods, such as machine learning algorithms based on nonlinear theory. However, a
large body of research indicates that when constructing a joint drought index for drought
monitoring, the Copula function can better capture the complex nonlinear relationships
that traditional drought index models and machine learning models often fail to detect.
For example, Yang et al. [23] employed the Copula function to construct a drought index
combining meteorological, agricultural, and hydrological variables, demonstrating that the
Copula function outperforms traditional drought indices and machine learning models in
drought monitoring.

Therefore, building on previous studies, this research constructed a Combined Joint
Drought Index (CJDI) for Liaoning Province, China, by using the Copula function to in-
tegrate the SPI and EDDI. It identified the spatiotemporal variation patterns of drought
in Liaoning Province and established the joint distribution of drought duration and in-
tensity through the Copula function. The study calculated the joint return period and
co-occurrence return period of droughts in the study area, providing a more comprehensive
and accurate tool for drought assessment. This approach more effectively captures the
spatiotemporal characteristics and cyclical variations of droughts in the region. This inno-
vative methodology introduces new perspectives and techniques for drought monitoring
and management, enhancing drought warning and response capabilities, mitigating the
adverse impacts of drought on agricultural production and the ecological environment,
ensuring food security, and promoting sustainable agricultural development.

2. Data and Methodology
2.1. Study Area

Liaoning Province (118◦53′~125◦46′ E, 38◦43′~43◦26′ N) is one of China’s important
grain-producing regions, located on the eastern coast of the Eurasian continent, at the
southernmost tip of China’s three northeastern provinces (Figure 1). The area has a tem-
perate continental monsoon climate, with ample sunshine, annual sunlight hours ranging
from 190 to 290 h, an evaporation rate of 1500 mm, and precipitation of 598 mm. The four
seasons are distinct, with precipitation and evaporation primarily concentrated from June
to August. During these months, the average annual evaporation is 600–700 mm, and the
precipitation is 499 mm. Climatic conditions lead to significant differences within Liaoning
Province: the average annual evaporation is generally higher in the east than in the west,
while the average annual precipitation is greater in the east than in the west and higher in
the south than in the north [24].
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2.2. Data Source

This study selects data from 25 meteorological stations in Liaoning Province, with
long-term meteorological records from the China Meteorological Data Network http://
data.cma.cn/ (accessed on 31 October 2021). The distribution of these stations is shown
in Figure 1. The meteorological data required for the study include daily data on average
humidity, sunlight hours, temperature, wind speed, and precipitation from 1981 to 2020.
All selected data have undergone strict quality control and are relatively complete. The
missing data rates for average humidity, sunlight hours, temperature, and wind speed are
all less than 1%, while the missing data rate for precipitation is less than 10%. Missing
data were supplemented using data from nearby stations on the same day, which were
interpolated and extended to complete the records, serving as the basis for calculating the
various drought indices.

To further analyze the regional and seasonal differences in drought in Liaoning
Province, the province was divided into four regions: east, west, south, and north. The
specific division details are shown in Table 1. The seasons were divided based on the actual
conditions in Liaoning Province, with spring being March to May, summer from June to
August, autumn from September to November, and winter from December to February of
the following year.

Table 1. Criteria for dividing Liaoning Province into eastern, western, southern, and northern regions.

Regions Included Meteorological Stations

Eastern Fushun, Qingyuan, Xinbin, Benxi, Kuandian, Dandong
Western Jianping, Jianchang, Chaoyang, Suizhong, Xingcheng, Zhangwu
Southern Dalian, Changhai, Wafangdian, Xiongyue, Yingkou, Dawa, Anshan, Xiuyan
Northern Changtu, Kaiyuan, Xinmin, Shenyang

Using drought event records from 2010 to 2020 provided by the China National Climate
Center database https://www.emdat.be/ (accessed on 31 October 2021) as reference values,
the accuracy of various drought indices in monitoring drought events was evaluated.

2.3. Research Methods
2.3.1. Calculation of Reference Crop Evapotranspiration

The reference crop evapotranspiration (ET0) for each station is calculated using the
most widely used Penman–Monteith equation [25], as shown in Equation (1).

ET0=
0.408 △ (Rn − G) +

900γµ2(es − ea)
T+273

△+ γ(1 + 0.34µ2)
(1)

In the equation, Rn is the net radiation, MJ/(m2d); G is the soil heat flux, MJ·m2/d,
which is calculated as 0 for the daily scale in this study; µ2 is the wind speed at 2 m height,
m/s; es is the saturated vapor pressure, kPa; ea is the actual vapor pressure, kPa; △ is the
slope of the saturated vapor pressure–temperature curve, kPa/◦C; γ is the psychrometric
constant, kPa/◦C; and T is the average air temperature, ◦C.

2.3.2. Calculation of Drought Indices

When calculating drought indices, using a 3-month scale data can provide more stable
drought assessments, suitable for seasonal drought monitoring. It also captures moisture
accumulation or deficits over a longer period, making it suitable for evaluating water
supply conditions during the crop growth cycle. This time scale not only helps accurately
reflect the water needs of agricultural production but also facilitates more effective mid-
term drought warnings and water resource management [26]. Therefore, the time scale
for all drought indices in this study is 3 months. Among the four drought indices, lower

http://data.cma.cn/
http://data.cma.cn/
https://www.emdat.be/
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values of SPI, SPEI, and CJDI indicate more severe drought, while higher values of EDDI
indicate more severe drought.

(1) Standardized Precipitation Index (SPI)

The calculation of the Standardized Precipitation Index (SPI) involves fitting the
gamma probability distribution to the precipitation data of each station in the study area,
followed by normal standardization to obtain the SPI [27]. The specific steps are as follows:

For given independent random precipitation data x, the first step is to calculate the
mean precipitation and standard deviation for the period, and then use these values to
calculate the skewness of the given precipitation data, as shown in Equation (2):

Skew =
N

(N − 1)(N − 2)∑
(

x − x
S

)3
(2)

where N is the number of precipitation samples; x is the mean precipitation; S is the
standard deviation.

The second step is to transform the precipitation data into logarithmic normal values,
thereby calculating the gamma distribution statistics U, shape parameter β, and scale
parameter α, as shown in Equations (3)–(5):

U = xln −
∑ ln(x)

N
(3)

β =
1 +

√
1 + 4U/3
4U

(4)

α =
x
β

(5)

Based on the shape parameter and scale parameter, the cumulative probability of the
precipitation data can be calculated, as shown in Equation (6):

G(x) =

∫ x
0 xα−1e

−x
β dx

βαГ(α)
(6)

Since the gamma function is undefined at x = 0 and precipitation during a certain
period may be 0, the cumulative probability needs to be calculated using Equation (7):

H(x) = q + (1 − q)G(x) (7)

where q may be 0 in the equation, the equation for calculating the Standardized Precipitation
Index is given by Equation (8):

SPI = S
t − (c2t + c1)t + c0

[(d3t + d2)t + d1]t + 1.0
(8)

where t =
√

ln 1
G(x)2 ; x is the precipitation during the period, mm; G(x) is the cumulative

probability corresponding to x; S is the probability density sign coefficient, with S = 1
when G(x) > 0.5 and S = −1 when G(x) ≤ 0.5; c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.

(2) Evaporative Demand Drought Index (EDDI)

The calculation of the Evaporative Demand Drought Index (EDDI) uses the empirical
Equation (9) to compute the cumulative empirical probability P(ET0) of ET0 at each station
in the study area [28]:

P(ET0) =
i − 0.33
n + 0.33

(9)
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where i is the rank of the cumulative ET0 for a given time period in the time series, with
i = 1 representing the maximum ET0; n is the length of the time series.

The EDDI can be obtained by standardizing the cumulative empirical probability
P(ET0i) using Equation (10):

EDDI = W − c0 + c1W + c2W2

1 + d1W + d2W2 + d3W3 (10)

when P(ET0): W =
√
−2lnP(ET0); when P(ET0), replace P(ET0) with 1 − P(ET0) and

take the opposite sign.

(3) Standardized Precipitation Evapotranspiration Index (SPEI)

The Standardized Precipitation Evapotranspiration Index (SPEI) is an index based on
the difference between precipitation and ET0 (D = P − ET0) for standardized calculations,
suitable for monitoring and assessing droughts over different time scales. First, calculate the
reference crop evapotranspiration (ET0), then determine the cumulative water deficit over
different time scales. The water deficit data series is then fitted using a three-parameter log-
logistic probability distribution function, Equation (11), and the SPEI is obtained through
the standardized cumulative probability density Equation (12) [29].

F(x) =

[
1 +

(
α

x − γ

)β
]−1

(11)

SPEI = V − c0 + c1V + c2V2

1 + d1V + d2V2 + d3V3 (12)

where α is the scale parameter, β is the shape parameter, and γ is the location parameter.
These three parameters can all be estimated using the L-moments method. The probability
of D > 0 is P(D) = 1 − F(x); when p ≤ 0.5, V =

√
−2lnP(D); when p > 0.5, replace P(D)

with 1 − P(D) and take the opposite sign.

(4) Combined Joint Drought Index (CJDI)

There are multiple types of Copula functions, such as Clayton, Frank, and Gumbel.
However, these high-dimensional parametric Copulas typically require numerous parame-
ters, which can constrain the correlation structures they represent [30]. When calculating
the Comprehensive Joint Drought Index (CJDI) by integrating SPI and EDDI, due to the
availability of sufficient data, the empirical Copula function, as used in Won’s [21] method,
was employed for its intuitive and simple formula to derive CJDI data on a 3-month time
scale. Compared to high-dimensional parametric Copula functions, the empirical Copula
function is advantageous for its simplicity and ease of use, and its feasibility has been
validated in prior studies [31]. The specific calculation method is as follows:

The first step is to set variable X1 as SPI and variable X2 as −EDDI. Then, the bivariate
empirical Copula with a sample size n for variables X1 and X2, Cn is defined as:

{X1, · · · , Xd}Cn

(
k1

n
,

k2

n

)
=

a
n

(13)

where ki is the ith rank of Xj (sorted in ascending order), Xj(ki) is the value of Xj correspond-
ing to the ith rank, and a is the number of {X1, X2} in the time series that simultaneously
satisfy X1 ≤ X1(k1)

and X2 ≤ X2(k2)
. Using the Copula function with SPI and −EDDI

as variables, the correlation between the two drought indices can be considered. For a
given bivariate marginal sample {u1x, u2x}, the Copula CU1,U2(u1x, u2x) is the cumulative
probability measure P[U1 ≤ u1x, U2 ≤ u2x] = q. There may be several marginal values
with the same cumulative probability C = q. If the cumulative probability q is used as
the drought index, drought events with the same q value can be considered to have the
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same impact. In this case, the Kendall distribution function Kc is defined as the cumulative
probability measure:

Kc(q) = P
[
CU1,U2(u1, u2) ≤ q

]
(14)

The second step is to construct the empirical distribution function, as shown in
Equation (15):

KCn

(
l
n

)
=

b
n

(15)

where b is the number of samples {X1,X2} such that Cn(k1/n, k2/n) ≤ l/n.
The third step is to apply this cumulative probability to the inverse function of the

cumulative standard normal distribution to calculate CJDI, as shown in Equation (16):

CJDI = N−1(Kc(q)) = N−1(P
[
CU1,U2(u1, u2) ≤ q

])
(16)

where N−1 is the inverse of the normal function. As variables for estimating CJDI, SPI, and
−EDDI show similar performance under drought conditions. Therefore, using −EDDI
and SPI to estimate CJDI also aligns with the drought classification of SPI. The CJDI, like
existing drought indices, is dimensionless.

2.3.3. Calculation of Drought Return Period

The run theory, first proposed by Yevjevich [32] to describe drought characteristics,
is also known as the run length theory. This paper combines CJDI time series values and
drought thresholds to identify and extract drought characteristics. In this study, when the
drought index value is less than −1, it is recorded as the occurrence of a drought event,
with the month identified as the start of the drought event. The event is considered to end
when CJDI > 0. The duration of a drought event is referred to as the drought duration,
and the sum of the absolute values of the drought index for all months during the event
is recorded as the drought intensity for that event. Based on the classification of SPEI-
3 drought duration and intensity in Northeast China by Shen et al. [33] and the actual
conditions, the drought levels for Liaoning Province are defined, as shown in Table 2.

Table 2. Criteria for dividing drought events levels.

Drought Events Levels Criteria

Light Drought and above Drought Duration > 1 Drought Intensity > 1
Moderate Drought and above Drought Duration > 3 Drought Intensity > 3

Severe Drought and above Drought Duration > 5 Drought Intensity > 5
Extreme Drought and above Drought Duration > 5 Drought Intensity > 5

Drought return periods are divided into joint return periods and concurrent return
periods. The joint return period T∪ represents the return period when either drought
duration or drought intensity exceeds a given threshold. By calculating the joint return
period, the likelihood of a specific drought level reoccurring within a certain time frame
can be assessed. The concurrent return period T∩ represents the return period when
both drought duration and drought intensity simultaneously exceed a given threshold.
By calculating the concurrent return period, the likelihood of multiple drought events
occurring simultaneously can be evaluated. The calculation methods for the two return
periods are shown in Equations (17) and (18):

T∪ =
E(L)

P(Dd ⩾ a ∪ Ds ⩾ b)
=

E(L)
1 − C(u, v)

(17)

T∩ =
E(L)

P(Dd ⩾ a ∩ Ds ⩾ b)
=

E(L)
1 − u − v + C(u, v)

(18)
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where u and v are the marginal distributions of drought duration and drought intensity,
respectively; C(u,v) is the joint probability distribution of drought duration and drought
intensity; a and b are the thresholds for drought duration and drought intensity, respectively;
and E(L) is the mean value of drought intervals.

2.3.4. Data Analysis Methodology

The Mann-Kendall (MK) test is a non-parametric trend test used to determine whether
there is a statistically significant trend in data. Compared to traditional trend test methods,
the MK test is distribution-free, meaning it does not require the sample distribution to
follow a specific pattern, and its results are not affected by outliers in the sample. This
makes it more convenient to apply to ordinal and categorical variables, allowing for the
quantitative calculation of trends in drought indices over time [34]. In this study, the
standard normal test statistic (Z) obtained from the MK test is used to assess the trend
changes in various indicators involved in the water cycle and soil moisture content over
specific periods. When |Z| is ≥1.28, 1.64, and 2.32, it indicates passing the significance
test at confidence levels of 90%, 95%, and 99%, respectively.

Morlet wavelet analysis is a time–frequency analysis method used to reveal local
features at different time scales in time series data. Compared to traditional Fourier
transform, Morlet wavelet analysis can provide both time and frequency information
simultaneously, making it more advantageous in handling non-stationary signals [35]. The
Morlet wavelet function is a complex wavelet. In this study, Morlet wavelet analysis was
used to monitor the multi-scale variation characteristics of drought index time series at
various meteorological stations. By performing wavelet transform on the time series, the
real part and variance of the complex wavelet for each station were calculated, revealing
the periodic changes of drought events in the study area and identifying the critical time
points of drought occurrence.

In this study, Matlab 2020a was used for data calculation and analysis, and Origin
2021 was used for plotting the figures.

3. Results
3.1. Comparison of Drought Indices in Monitoring Actual Drought Events

Figure 2 shows the monthly variation trends of four drought indices (CJDI, −EDDI,
SPEI, and SPI) at 25 meteorological stations in the study area from 1981 to 2020. The
frequency of data fluctuations is significantly lower for the comprehensive drought indices
SPEI and CJDI. The figure shows that the SPI and −EDDI, as standardized indices based
on single data, have 39 and 43 months, respectively, with mean values < −1 at each station
during the study period, and 6 and 4 months with mean values < −1.5. In contrast,
the SPEI and CJDI, as composite indices combining precipitation and evaporation, have
49 and 140 months with mean values < −1, and 3 and 2 months with mean values < −1.5,
respectively. From the figure, it can be seen that the SPI has the largest fluctuation range,
while the EDDI has the smallest. The fluctuation ranges of the SPEI and CJDI are between
those of the SPI and EDDI, but their fluctuation frequency is significantly higher than that
of the SPI. It is evident that severe droughts in Liaoning Province are mainly caused by
insufficient precipitation, and excessive evaporation is not the main factor causing severe
drought events in Liaoning Province. The the SPEI and CJDI can monitor more drought
events than the SPI and EDDI.
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Figure 2. Dynamic changes of various drought indices at all meteorological stations in the study
area from 1981 to 2020. Note: in the figure, SPI, SPEI, EDDI, and CJDI represent the Standardized
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Drought Index, and Comprehensive Joint Drought Index, respectively.

Additionally, from the monthly variation trends of each drought index, it can be ob-
served that the changes in the drought indices in Liaoning Province exhibit clear seasonality.
The drought indices fluctuate significantly in spring and summer, with the mean drought
indices at various stations frequently falling below −1. In contrast, the CJDI in autumn and
winter is relatively stable, although in some extreme years, the mean drought indices can
also fall below −1.

Figures 3 and 4 show the ability of four drought indices to monitor actual drought
events at various meteorological stations in the study area from 2010 to 2020. By compar-
ing the performance of these indices at each station, their accuracy in monitoring actual
drought events can be evaluated. As shown in Figures 1 and 3, the western part of Liaoning
Province experienced the most actual drought events from 2010 to 2020, with 11 occur-
rences, while the southern part had the least, with 8 occurrences. Figure 4 indicates that
the SPI and EDDI, as standardized indices based on single data, have a significantly lower
accuracy in monitoring drought events compared to the actual number of drought events.
The average monitoring rates for drought events at each station were only 52.24% and
62.11%, respectively, indicating that the SPI and EDDI have poor sensitivity in identify-
ing drought events. In contrast, the composite indices SPEI and CJDI, which combine
precipitation and evaporation, monitored a number of drought events close to the actual
occurrences, with monitoring rates of 89.11% and 92.69%, respectively. This shows that
the SPEI and CJDI have higher accuracy and sensitivity in drought monitoring and can
more comprehensively capture the occurrence of drought events. Among them, the CJDI
had the strongest monitoring ability for drought events; therefore, the CJDI will be used as
the calculation index in subsequent analyses of the spatiotemporal variation patterns of
drought in Liaoning Province.
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Figure 4. Percentage of drought events monitored by each drought indicator. Note: different letters
on the same row indicate that the data within each box differs significantly at the 5% probability
level. The SPI, SPEI, EDDI, and CJDI represent the Standardized Precipitation Index, Standardized
Precipitation Evapotranspiration Index, Evaporative Demand Drought Index, and Comprehensive
Joint Drought Index, respectively.

3.2. Spatiotemporal Variation Patterns of Drought in Liaoning Province

The results of the MK trend test for the average CJDI values at each station in the
eastern, western, southern, and northern regions of Liaoning Province from 1981 to 2020
are shown in Figure 5. The figure shows that the MK trend test Z-values for all four regions
(east, west, south, and north) of Liaoning Province are negative, indicating an increasing
trend in drought intensity across these regions. Specifically, the MK test Z-values for the
eastern, southern, and northern regions of Liaoning Province are −0.69, −0.60, and −0.66,
respectively, suggesting an increasing trend in drought intensity in these three regions,
but not significantly. In contrast, the MK test Z-value for the western region is −4.53,
indicating a highly significant increasing trend in drought intensity in the western region.
Additionally, the average CJDI values in the eastern and western regions of Liaoning
Province fluctuate greatly over time, indicating frequent drought events, while the average
CJDI values in the southern and northern regions fluctuate more steadily, indicating a
lower frequency of drought events.
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Figure 5. The variation in CJDI over time across different regions in Liaoning Province. Note: in the
figure, CJDI represents the Comprehensive Joint Drought Index, and the Z value is the standardized
statistic of the MK trend test. The larger the absolute value of Z, the more significant the upward or
downward trend in the data.

To further analyze the response of drought intensity to seasonal variations in the
eastern, western, southern, and northern regions of Liaoning Province and the periodic
changes in the average CJDI values at each station during spring, summer, autumn, and
winter, a Morlet wavelet analysis was conducted on the average CJDI values at each station
in the four regions. The resulting real part contour maps and variance line charts of the
complex wavelets for each region are shown in Figure 6. The figure shows that in the
spring contour maps, the blue areas are the most extensive, and the variance values are the
highest, indicating the most significant periodic fluctuations in drought across all regions,
with main cycles of 5–20 years and longer cycles of 40–57 years. In summer, both the blue
areas in the contour maps and the variance values decrease, indicating that the periodic
fluctuations in drought are weaker than in spring, with the main drought occurrence period
lagging by about 5 years compared to spring. In autumn and winter, most areas in the
contour maps for the eastern and southern regions are green, and the variance values show
weaker fluctuations, indicating a lower probability of drought occurrence and weaker
periodic fluctuations in these two seasons. However, in the western and northern regions
of Liaoning Province, strong drought events still occur in autumn and winter, but with
longer cycles. The main drought occurrence period in the western region is 35–42 years,
and in the northern region, it is 20–25 years.
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In summary, from 1981 to 2020, the drought intensity in all regions of Liaoning
Province showed an upward trend, with the increase being most significant in the western
region. Drought events in Liaoning Province are greatly influenced by the seasons, with
the most significant periodic fluctuations occurring in spring. In contrast, severe drought
events rarely occur in autumn and winter.

3.3. Analysis of Drought Recurrence Periods

Figure 7 shows the spatial distribution of the drought recurrence periods for different
drought levels (mild drought, moderate drought, severe drought, and extreme drought)
calculated based on the Combined Joint Drought Index (CJDI). As shown in the figure, the
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distribution patterns of the co-occurrence recurrence period and the joint recurrence period
are generally consistent. Mild droughts occur frequently in Liaoning Province, with joint
and co-occurrence recurrence periods ranging from 1.0 to 1.8 years. Moderate droughts
show significant spatial differences in recurrence periods within Liaoning Province, with the
eastern region having shorter joint recurrence periods between 1.2 and 1.4 years, while the
western and southern regions have joint recurrence periods ranging from 1.4 to 2.2 years.
The co-occurrence recurrence period for moderate droughts is longest in the southern
region, ranging from 3.0 to 4.0 years, while other regions have co-occurrence recurrence
periods between 1.6 and 2.5 years. Severe droughts occur less frequently in Liaoning
Province, with joint and co-occurrence recurrence periods ranging from 1.6 to 2.8 years
and 1.6 to 4.5 years, respectively. In particular, the southern region and the Anshan station
have significantly higher severe drought recurrence periods than other stations, with joint
recurrence periods of 2.4 to 2.8 years and co-occurrence recurrence periods of 3.5 to 4.5 years.
Extreme droughts have the lowest occurrence frequency, with joint recurrence periods over
2.6 years and co-occurrence recurrence periods over 3.5 years.
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Figure 7. The spatial distribution of drought return periods for different drought event levels based on
CJDI. Note: CJDI stands for the Comprehensive Joint Drought Index. The joint return period indicates
the return period when either drought duration or drought intensity exceeds a given threshold, which
helps evaluate the likelihood of a specific drought level reoccurring within a certain period. The
co-occurrence return period signifies the return period when both drought duration and drought
intensity simultaneously exceed a given threshold, assessing the probability of multiple drought
events occurring at the same time.

4. Discussion

In this study, the SPI and EDDI were able to monitor fewer drought events, with
the average accuracy of drought event monitoring at each station being only 52.24% and
62.11%, respectively. This is because the traditional SPI and EDDI primarily rely on
single precipitation or evaporation indicators, which cannot reflect droughts caused by
complex climate variable changes. Won et al. [21] also suggested that compared to the SPI,
which only considers precipitation, and the EDDI, which mainly focuses on evaporation,
the CJDI integrates both precipitation and evaporation through the Copula function in
drought prediction, capturing the nonlinear dependencies between these factors. This
more accurately reflects the complexity of drought events; thus, the accuracy of the SPI
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and EDDI in monitoring drought events is lower than that of the CJDI. However, Hobbins
et al. [13] found that the EDDI overestimates the frequency of drought events, whereas
in this study, the EDDI’s accuracy in monitoring drought events is slightly higher than
the SPI, but the number of drought events monitored from 2010 to 2020 is significantly
lower than the actual number of drought events. This is because Liaoning Province is at a
higher latitude with lower surface temperatures, and the average annual evaporation is
only 914 mm, which is below the average annual evaporation of other provinces in China,
making it not a major factor in the occurrence of drought events in the region.

It can be seen at Figure 8 that the slopes of the changes in precipitation and evaporation
in Liaoning Province from 1980 to 2020 are −0.76 and 0.24, respectively. This indicates
that in recent years, precipitation in Liaoning Province has shown a decreasing trend,
while evaporation has shown an increasing trend. Therefore, it is necessary to construct
a combined drought index that integrates multiple meteorological variables to monitor
drought events. In this study, the accuracy of drought event monitoring using the SPEI is
significantly higher than that of the SPI and EDDI, which is similar to previous research
results [36,37]. However, Kim et al. [17] pointed out in their study that although the
SPEI considers both precipitation and evaporation, its performance in Korea is similar
to that of the SPI and does not fully reflect the impact of evaporation on drought events.
This is because, in calculating the SPEI, although both precipitation and evaporation are
theoretically considered, when the precipitation in a given month increases significantly,
even if evaporation also increases, the water balance (precipitation–evaporation) may still
be positive, causing the SPEI to fail to indicate drought conditions. In this study, the CJDI
has the highest accuracy in monitoring drought events among the four indices, 3.58%
higher than the SPEI, which also considers both precipitation and evaporation. This is
because, compared to the SPEI, the CJDI uses the Copula function to combine the marginal
distributions of the SPI and EDDI to construct a joint distribution model. This method
can capture the dependency between precipitation and evaporative demand, enhancing
sensitivity to changes in evaporative demand and avoiding potential information loss
from simple linear combinations [38]. The results of this study also verify that the CJDI
has significant advantages in drought monitoring compared to the SPI, EDDI, and SPEI,
making it a more comprehensive and accurate tool for drought assessment.
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Figure 8. Precipitation and evaporation changes in Liaoning Province from 1981 to 2020. Note: the
straight line in the figure is derived from linear fitting based on the mean annual precipitation and
evaporation data from each station. A positive slope suggests an upward trend in the data, while a
negative slope indicates a downward trend.

By studying the spatiotemporal variation patterns of drought in Liaoning Province, it
was found that from 1981 to 2020, the drought intensity in all regions of Liaoning Province
showed an upward trend, with the western region experiencing the most significant in-
crease in drought intensity, as indicated by the MK trend test Z-value of −4.53. Figure 9a
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shows that the western region of Liaoning has the highest annual evaporation but signifi-
cantly lower precipitation compared to the other three regions, with an annual precipitation
deficit of 105.17 mm compared to the third-ranked southern region, leading to frequent
drought events in the western region. Yue et al. [39] also concluded in their study of drought
characteristics in Northeast China from 1970 to 2014 that the western region of Liaoning
Province experiences the most severe and frequent droughts, with a risk of intensification.
Additionally, the periodic variations in different regions show that the most significant
periodic fluctuations in drought events occur in the spring, while severe drought events
rarely occur in autumn and winter. Figure 9b indicates that the fluctuations in precipitation
and evaporation are greater in spring and summer, leading to more significant fluctuations
in the drought index. In particular, in spring, high evaporation and insufficient precipi-
tation result in an annual evaporation-to-precipitation difference of 66.67 mm, which is
84.88, 41.62, and 48.11 mm higher than in summer, autumn, and winter, respectively. This
indicates that in Liaoning Province, the mismatch between rainfall and heat in spring, with
evaporation significantly exceeding precipitation, leads to frequent drought events. The
calculation results of the joint recurrence period and co-occurrence recurrence period in
Liaoning Province show that their spatial distribution patterns are generally consistent,
with similar frequencies of mild and moderate droughts. This suggests that in future
drought prevention strategies, it is important to consider not only the recurrence period of
single drought events but also the risk of multiple drought events occurring simultaneously.
The findings of this study hold significant implications for regional planning and water
resource management in Liaoning Province. Policymakers can leverage insights from
drought recurrence pattern predictions to develop more resilient agricultural and water
management strategies. Furthermore, understanding the seasonal variations of drought can
aid in more effective water resource allocation, ensuring adequate water availability during
critical agricultural periods, particularly when drought risks are higher in spring and
summer. By incorporating these findings into regional planning, policymakers can alleviate
the adverse effects of drought on both agriculture and urban areas, minimize economic
losses, and strengthen the disaster resilience of communities in Liaoning Province [22,40].
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Figure 9. Annual average precipitation and evaporation across regions and seasons in Liaoning
Province from 1981 to 2020. Note: different letters on the same row indicate that the data within each
box differs significantly at the 5% probability level. In the legend, Eastern, Western, Southern, and
Northern represent the four regions of Liaoning Province. The specific provinces included in each
region are listed in Table 1.

This study analyzed the spatiotemporal variation patterns of drought in Liaoning
Province from 1981 to 2020. The results indicate that both drought intensity and the fre-
quency of drought events have shown an increasing trend in Liaoning Province. Influenced
by global climate change, global temperatures are increasing, leading to higher evapora-
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tion rates and changes in precipitation patterns, which are expected to further exacerbate
the drought trend in Liaoning Province [40], especially in the western region, where the
frequency and intensity of drought events may further intensify. Currently, CMIP6 (the
Sixth Coupled Model Intercomparison Project) provides various climate models and future
climate scenarios. Compared to CMIP5 (the Fifth Coupled Model Intercomparison Project),
CMIP6 has improved model physical processes, higher resolution, more comprehensive
simulation datasets, and broader scientific coverage, thereby offering more accurate and
detailed climate predictions and assessments [41]. In the future, it is necessary to consider
using CMIP6 data to calculate the CJDI under various future climate models to predict the
future drought trends in Liaoning Province more accurately, and thereby better manage
drought risks.

Additionally, with the increase in extreme climate events in recent years, the im-
portance of short-term drought monitoring has become increasingly prominent. Using
Copula functions combined with the latest remote sensing products, such as solar-induced
chlorophyll fluorescence (SIF) or soil moisture, can significantly improve the accuracy
and reliability of short-term drought monitoring [42]. Copula functions have a unique
advantage in handling multivariate dependency structures and can effectively capture the
nonlinear correlations between meteorological, soil moisture and temperature, and satellite
remote sensing data, thereby providing more accurate drought warnings and assessments.
Furthermore, the flexibility of Copula functions allows them to adapt to the analytical needs
of different temporal and spatial scales, enhancing the applicability and responsiveness of
drought monitoring systems [43]. Future research could consider constructing a combined
drought index based on Copula functions that comprehensively considers meteorological,
soil moisture and temperature, and satellite remote sensing data, aiming to respond quickly
to short-term drought events and reduce the adverse impacts of extreme climate events on
agriculture, hydrology, and socio-economic sectors.

5. Conclusions

This study is based on the empirical Copula function to construct the Comprehensive
Joint Drought Index (CJDI), which takes both precipitation and evaporation into account.
The study investigates the spatiotemporal patterns of drought in Liaoning Province, China,
and the following conclusions were drawn:

(1) The CJDI, developed using the empirical Copula function, provides a more com-
prehensive representation of both precipitation and evaporation demands. Its drought
monitoring capability significantly surpasses that of the single-indicator SPI and EDDI, as
well as the linear combination of precipitation and evaporation in the SPEI. The accuracy
of drought event monitoring is improved by 40.45%, 30.58%, and 3.58%, respectively.

(2) Monitoring via the CJDI reveals that from 1981 to 2020, the drought intensity in all
regions of Liaoning Province (east, west, south, and north) exhibited an upward trend, with
the western region showing the most pronounced increase, indicated by an MK test Z-value
of −4.53. Additionally, drought events in Liaoning Province display clear seasonality,
with the most significant periodic fluctuations occurring in spring, while the frequency of
drought events in autumn and winter is lower and less variable.

(3) The spatial distribution patterns of the co-occurrence recurrence period and the
joint recurrence period are generally consistent. As drought intensity increases, the joint
and co-occurrence recurrence periods lengthen, while the frequencies of mild and moderate
drought events are nearly identical. Future drought prevention strategies should prioritize
addressing the frequently occurring mild and moderate droughts. It is important to consider
not only the recurrence period of single drought events but also the risk of multiple drought
events occurring simultaneously.
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